9,650 research outputs found

    Gamma ray induced radiation damage in PWO and LSO/LYSO crystals

    Get PDF
    This paper compares Îł-ray induced radiation damage effect in two kinds of heavy crystal scintillators: PWO and LSO/LYSO. Scintillation emission, optical transmission, light output, decay kinetics and light response uniformity were measured for PWO and LSO/LYSO crystal samples of large size before and after Îł-ray irradiations. Îł-ray induced phosphorescence was also measured, and the corresponding readout noise was determined

    Emission Spectra of LSO and LYSO Crystals Excited by UV Light, X-Ray and Îł-ray

    Get PDF
    Because of their high stopping power (X_o = 1.14 cm, R_(Moliere) = 2.07 cm) and fast (~ 40 ns) bright (4 times of BGO) scintillation, cerium doped lutetium oxyorthosilicate (LSO) and cerium doped lutetium-yttrium oxyorthosilicate (LYSO) crystals have attracted a broad interest in the high energy physics community. This paper presents a comparative study on emission spectra measured for large size BGO, lead tungstate (PbWO_4), LSO and LYSO samples excited by UV light (photo-luminescence) with and without internal absorption, X-ray (X-luminescence) and gamma-ray (radio-luminescence). A red shift was observed between the emission spectra with internal absorption as compared to that without. An additional red shift and a significant red component were observed in the radio-luminescence spectra measured for LSO samples but not LYSO samples, which were disappeared after a gamma-ray irradiation with an accumulated dose of 5 x 10^3 rad. This is the only significant difference observed between the large size LSO and LYSO samples. The origin of these red shifts and the consequence to their light output and applications in the high energy and nuclear physics experiments are discussed

    Effects of Neutron Irradiations in Various Crystal Samples of Large Size for Future Crystal Calorimeter

    Get PDF
    In this paper, we report an investigation on the radiation damage effects induced by neutrons in large size crystal scintillator: BGO, CeF_3, LYSO:Ce and PWO. The irradiations were carried out by using fast neutrons from one ^(241)Am-Be and two ^(252)Cf sources. The optical and scintillation properties of these samples, including UV excitation and emission spectra, longitudinal transmission, light output, decay kinetics and light response uniformity, were measured before and after the irradiations. The neutron induced photo-current was also measured, and was used to estimate the readout noise under the neutron flux expected by an electromagnetic calorimeter at a very severe radiation environment. Because of its high light output and excellent radiation resistance LYSO:Ce crystal is found to have the smallest neutron induced readout noise as compared to other large size crystals, indicating it is a good candidate material for a future crystal calorimeter in a severe radiation environment

    A Study on Correlations Between the Initial Optical and Scintillation Properties and Their Radiation Damage for Lead Tungstate Crystals

    Get PDF
    This paper presents a study of correlations between the initial optical and scintillation properties and their radiation damage for mass produced lead tungstate crystals. A correlation was observed between crystal's initial light outputs and the values of its initial longitudinal transmittance at 360 nm. A strong correlation was found between the emission weighted radiation induced absorption coefficients and the relative losses of the longitudinal transmittance at 440 nm. Correlations were also observed between the relative losses of crystal's light output and the relative losses of its longitudinal transmittance at 440 nm, or the emission weighted radiation induced absorption coefficients. No correlations were observed between crystal's radiation hardness and its initial longitudinal transmittance or the slope of the initial longitudinal transmittance across the band edge

    A Radiation Damage and Recovery Study for Lead Tungstate Crystals from BTCP and SIC

    Get PDF
    This paper presents result of a study on radiation damage and recovery for lead tungstate crystals produced at BTCP and SIC. Correlations were observed between initial light output and initial longitudinal transmittance at 360 nm, between the loss of longitudinal transmittance at 440 nm and the loss of light output, and between radiation damages levels at different dose rates. No correlations, however, were found between crystal’s initial optical properties and radiation hardness. Excellent linearity was observed between the variations of crystal’s light output and its longitudinal transmittance at 440 nm in several cycles of irradiation followed by recovery, indicating these PWO crystals can be monitored in situ at LHC
    • …
    corecore