20 research outputs found
Multi-Modal 3D Object Detection in Autonomous Driving: a Survey
In the past few years, we have witnessed rapid development of autonomous
driving. However, achieving full autonomy remains a daunting task due to the
complex and dynamic driving environment. As a result, self-driving cars are
equipped with a suite of sensors to conduct robust and accurate environment
perception. As the number and type of sensors keep increasing, combining them
for better perception is becoming a natural trend. So far, there has been no
indepth review that focuses on multi-sensor fusion based perception. To bridge
this gap and motivate future research, this survey devotes to review recent
fusion-based 3D detection deep learning models that leverage multiple sensor
data sources, especially cameras and LiDARs. In this survey, we first introduce
the background of popular sensors for autonomous cars, including their common
data representations as well as object detection networks developed for each
type of sensor data. Next, we discuss some popular datasets for multi-modal 3D
object detection, with a special focus on the sensor data included in each
dataset. Then we present in-depth reviews of recent multi-modal 3D detection
networks by considering the following three aspects of the fusion: fusion
location, fusion data representation, and fusion granularity. After a detailed
review, we discuss open challenges and point out possible solutions. We hope
that our detailed review can help researchers to embark investigations in the
area of multi-modal 3D object detection
Effect of enzymatically produced tuna oil acylglycerol on the characteristics of gelatin O/W emulsion during microencapsulation using complex coacervation
Complex coacervation is an effective process to deliver ingredients for functional food applications. A stable oil-in-water (O/W) emulsion with desired characteristics significantly affects the complex coacervation and the quality of final microcapsules. In this study, tuna oil was partially hydrolyzed using TL100 and ADL lipases to produce acylglycerols TL100-AC and ADL-AC, respectively. These lipids were subsequently stabilized by gelatin in the O/W emulsion, followed by the complex coacervation with sodium hexametaphosphate. The effect of lipids on emulsion properties, such as interfacial properties, rheological properties, protein conformation and microcapsule formation during complex coacervation, was investigated. Compared with tuna oil-based emulsion, acylglycerol-based ones exhibited reduced droplet size (75%). These changes were beneficial to the formation of coagulant and flocculant so that gelatin-stabilized acylglycerol-based O/W emulsion resulted in improved complex coacervation between gelatin and sodium hexametaphosphate. This study provides a scientific basis for designing specific gelatin O/W emulsions and microencapsulation for the stabilization and delivery of omega-3 fatty acids
Efficacy of dupilumab in the treatment of severe vulvar pruritus associated with lichen sclerosus et atrophicus: a case report
Lichen sclerosus et atrophicus (LSA) is a chronic inflammatory skin lesion with an undefined cause. It is more commonly found in the genital area, particularly in adolescents, premenopausal women and postmenopausal women. LSA is difficult to treat and often recurs. The primary treatment for LSA involves the administration of potent topical corticosteroids. Dupilumab is increasingly being used for the treatment of itching in non-atopic dermatitis patients but there are few reports on its use for the treatment of LSA. Here, we present a case of LSA in a 61-year-old woman with extensive vulvar itching. Over four months of dupilumab therapy, significant therapeutic effects were observed, including vulvar skin thinning and pruritus relief without adverse reactions
Research on Collision Restitution Coefficient Based on the Kinetic Energy Distribution Model of the Rocking Rigid Body within the System of Mass Points
Rocking structures exhibit significant collapse resistance during earthquakes. In studies of rocking rigid bodies, the collision restitution coefficient is typically determined based on the classical model of the rocking rigid bodies. However, during the rocking process, the collision restitution coefficient, influenced by the uncontrollable error in collision energy dissipation between the rigid body and the ground, indirectly impacts the final results of the equations of motion. Therefore, the rationality and reliability of the collision restitution coefficient are crucial for seismic analysis of rocking rigid bodies and self-centering members. This paper introduces a phasic energy dissipation and kinetic energy redistribution model specifically designed for the rocking rigid body within the system of mass point. This model divides the collision into three distinct stages, incorporating energy dissipation considerations in the first two stages to calculate the total kinetic energy of the rigid body. In the third stage, the remaining kinetic energy is redistributed to precisely determine the analytical solution for the collision restitution coefficient of an ideal, homogeneous rectangular rigid body during collision. Lastly, the validity and reliability of the proposed model are confirmed through comparisons with experimental data
Biogenerated OxygenâRelated Environmental Stressed Apoptotic Vesicle Targets Endothelial Cells
Abstract The dynamic balance between hypoxia and oxidative stress constitutes the oxygenârelated microenvironment in injured tissues. Due to variability, oxygen homeostasis is usually not a therapeutic target for injured tissues. It is found that when administered intravenously, mesenchymal stem cells (MSCs) and in vitro induced apoptotic vesicles (ApoVs) exhibit similar apoptotic markers in the wound microenvironment where hypoxia and oxidative stress coâexisted, but MSCs exhibited better effects in promoting angiogenesis and wound healing. The derivation pathway of ApoVs by inducing hypoxia or oxidative stress in MSCs to simulate oxygen homeostasis in injured tissues is improved. Two types of oxygenârelated environmental stressed ApoVs are identified that directly target endothelial cells (ECs) for the accurate regulation of vascularization. Compared to normoxic and hypoxic ones, oxidatively stressed ApoVs (OxiâApoVs) showed the strongest tube formation capacity. Different oxygenâstressed ApoVs deliver similar miRNAs, which leads to the broad upregulation of EC phosphokinase activity. Finally, local delivery of OxiâApoVsâloaded hydrogel microspheres promotes wound healing. OxiâApoVâloaded microspheres achieve controlled ApoV release, targeting ECs by reducing the consumption of inflammatory cells and adapting to the proliferative phase of wound healing. Thus, the biogenerated apoptotic vesicles responding to oxygenârelated environmental stress can target ECs to promote vascularization
Sodium Butyrate Induces CRC Cell Ferroptosis via the CD44/SLC7A11 Pathway and Exhibits a Synergistic Therapeutic Effect with Erastin
Colorectal cancer (CRC) is one of the most common malignancies, and effective treatment and prevention methods are lacking. Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber. It has been shown to be effective in inhibiting CRC, but the mechanism is not known. Methods: Human normal intestinal epithelial cell line FHT and colorectal tumor cell line HCT-116 were treated with NaB alone or in combination with different programmed cell death inhibitors. Cell activity was then assessed with MTT assays and PI staining; ferroptosis with Fe2+, glutathione (GSH), and lipid peroxidation assays; signaling pathway screening with PCR arrays; and CD44, SCL7A11, and GPX4 expression with Western blotting. A CD44-overexpressing HCT-116 cell line was constructed to determine the effect of the overexpression of CD44 on NaB-induced ferroptosis. The synergistic effect of co-treatment with NaB and Erastin was assessed by isobolographic analysis. Results: NaB induced apoptosis and ferroptosis in HCT-116 cells but only induced low-level apoptosis in FHC cells. Moreover, NaB significantly increased intracellular Fe2+ and promoted GSH depletion and lipid peroxidation in HCT-116 cells. Ferroptosis-related qPCR array analysis identified CD44/SLC7A11 as a potential effector molecular of NaB-induced ferroptosis. NaB significantly inhibited the expression of CD44 and SLC7A11 in mouse CRC tissues. A CD44 overexpressed HCT-116 cell line was used to verify that CD44/SLC7A11 was a key signaling pathway that NaB-induced GSH depletion, lipid peroxidation accumulation, and ferroptosis in HCT-116 cells. Examination of whether NaB can increase the effect of ferroptosis agents showed that NaB, in combination with Erastin, a ferroptosis inducer, further promoted HCT-116 cell death and increased changes of ferroptosis markers. Conclusions: Our results suggest that NaB induces ferroptosis in CRC cells through the CD44/SLC7A11 signaling pathway and has synergistic effects with Erastin. These results may provide new insights into CRC prevention and the combined use of NaB and ferroptosis-inducing agents
Regulated extravascular microenvironment via reversible thermosensitive hydrogel for inhibiting calcium influx and vasospasm
Arterial vasospasm after microsurgery can cause severe obstruction of blood flow manifested as low tissue temperature, leading to tissue necrosis. The timely discovery and synchronized treatment become pivotal. In this study, a reversible, intelligent, responsive thermosensitive hydrogel system is constructed employing both the gelâsol transition and the solâgel transition. The âreversible thermosensitive (RTS)â hydrogel loaded with verapamil hydrochloride is designed to dynamically and continuously regulate the extravascular microenvironment by inhibiting extracellular calcium influx. After accurate implantation and following in situ gelation, the RTS hydrogel reverses to the sol state causing massive drug release to inhibit vasospasm when the tissue temperature drops to the predetermined transition temperature. Subsequent restoration of the blood supply alleviates further tissue injury. Before the temperature drops, the RTS hydrogel maintains the gel state as a sustained-release reservoir to prevent vasospasm. The inhibition of calcium influx and vasospasm in vitro and in vivo is demonstrated using vascular smooth muscle cells, mice mesenteric arterial rings, and vascular ultrasonic Doppler detection. Subsequent animal experiments demonstrate that RTS hydrogel can promote tissue survival and alleviate tissue injury responding to temperature change. Therefore, this RTS hydrogel holds therapeutic potential for diseases requiring timely detection of temperature change
Reprogramming stem cells in regenerative medicine
Abstract Induced pluripotent stem cells (iPSCs) that are generated from adult somatic cells are induced to express genes that make them pluripotent through reprogramming techniques. With their unlimited proliferative capacity and multifaceted differentiation potential and circumventing the ethical problems encountered in the application of embryonic stem cells (ESC), iPSCs have a broad application in the fields of cell therapy, drug screening, and disease models and may open up new possibilities for regenerative medicine to treat diseases in the future. In this review, we begin with different reprogramming cell technologies to obtain iPSCs, including biotechnological, chemical, and physical modulation techniques, and present their respective strengths, and limitations, as well as the recent progress of research. Secondly, we review recent research advances in iPSC reprogrammingâbased regenerative therapies. iPSCs are now widely used to study various clinical diseases of hair follicle defects, myocardial infarction, neurological disorders, liver diseases, and spinal cord injuries. This review focuses on the translational clinical research around iPSCs as well as their potential for growth in the medical field. Finally, we summarize the overall review and look at the potential future of iPSCs in the field of cell therapy as well as tissue regeneration engineering and possible problems. We believe that the advancing iPSC research will help drive longâawaited breakthroughs in cellular therapy
Biomedical applications of Janus membrane
The traditional membrane with single structure cannot satisfy complex clinical applications. Inspired by lotus leaf, a novel structure Janus membrane has achieved more attention recently. Janus membrane is a membrane structure which has two faces with opposite properties. This special structure endows it with asymmetric surface wettability, which can provide an intrinsic driving force to transport along a specified direction, thus achieve unidirectional liquid transport and selective liquid separation. Janus membrane has a promising future, and has been widely used in chemical fields such as self-cleaning, oil/water separation, mist collection, and desalination, while less studied in biomedical field. In this review, the biomedical applications especially in different stages of wound healing process, current challenges in fabrication process and future perspectives of Janus membranes in practical applications under different Janus models, such as hemostasis, bone regeneration, blood cell isolation and gastric mycosal defect will be discussed. It is expected that this unique structure can provide a good therapy prospect in biomedical fields