19 research outputs found
Using Quantum Rotational Polarization Moments To Describe The Stereodynamics Of The H+d2(v=0,j=0)→hd(v′,j′) + D Reaction
We present results of quantum calculations we have performed on the title reaction in order to study its stereodynamics at collision energies of 0.54 and 1.29 eV. Our theoretical model is based on a representation where directional properties are expressed in terms of real rotational polarization moments instead of magnetic quantum numbers. We analyze the physical meaning of rotational polarization moments and show that, when defined as in the present work, these quantities directly describe the reaction stereodynamics in terms of intuitive chemical concepts related to preferences in the reaction mechanism for particular planes and senses of molecular rotation. Using this interpretation, we identify two distinct regimes for the stereodynamics of the title reaction, observed when HD is formed with low or high rotational excitation. We also identify relevant characteristics of both regimes: (i) the existence and location of preferred planes and senses of molecular rotation, (ii) correlations between these preferences, the scattering angle and the reaction probability, and (iii) their dependence on the collision energy. © 1998 American Institute of Physics.108831423153Bernstein, R.B., Levine, R.D., Herschbach, D.R., (1987) J. Phys. Chem., 91, p. 5365Houston, P.L., (1987) J. Phys. Chem., 91, p. 5388Simons, J.P., (1987) J. Phys. Chem., 91, p. 537Hall, G.E., Houston, P.L., (1989) Annu. Rev. Phys. Chem., 40, p. 375Levine, R.D., (1990) J. Phys. Chem., 94, p. 8872Orr-Ewing, A.J., Zare, R.N., (1994) Annu. Rev. Phys. Chem., 45, p. 315Brouard, M., Simons, J.P., (1995) Chemical Dynamics and Kinetics of Small Radicals, , edited by A. Wagner and K. Liu World Scientific, SingaporeLoesch, H.J., (1995) Annu. Rev. Phys. Chem., 46, p. 555Orr-Ewing, A.J., (1996) J. Chem. Soc. Faraday Trans., 92, p. 881Houston, P.L., (1996) J. Phys. Chem., 100, p. 12757Stereodynamics Issue (1987) J. Phys. Chem., 91, pp. 5365-5515Stereodynamics Issue (1989) J. Chem. Soc. Faraday Trans., 85, pp. 925-1376Richard Bernstein Memorial Issue on Molecular Dynamics (1991) J. Phys. Chem., 95, pp. 7961-8421Orientation and Polarisation Effects in Chemical Reaction Dynamics (1993) J. Chem. Soc. Faraday Trans., 89, pp. 1401-1592Stereodynamics and Active Control in Chemical Reactions (1995) J. Phys. Chem., 99, pp. 13569-13754Stereodynamics of Chemical Reactions (1997) J. Phys. Chem., 101, pp. 7461-7690Brouard, M., Lambert, H.M., Rayner, S.P., Simons, J.P., (1996) Mol. Phys., 89, p. 403Alexander, A.J., Aoiz, F.J., Brouard, M., Burak, I., Fujimura, Y., Short, J., Simons, J.P., (1996) Chem. Phys. Lett., 262, p. 589Rakitzis, T.P., Kandel, S.A., Lev-On, T., Zare, R.N., (1997) J. Chem. Phys., 107, p. 9392Barnwell, J.D., Loeser, J.G., Herschbach, D.R., (1983) J. Phys. Chem., 87, p. 2781De Miranda, M.P., Clary, D.C., (1997) J. Chem. Phys., 106, p. 4509Aoiz, F.J., Brouard, M., Herrero, V.J., Sáez Rábanos, V., Stark, K., (1997) Chem. Phys. Lett., 264, p. 487Bradley, K.S., Schatz, G.C., (1997) J. Chem. Phys., 106, p. 8464Alvariño, J.M., Aquilanti, V., Cavalli, S., Crocchianti, S., Laganà, A., Martinez, T., (1997) J. Chem. Phys., 107, p. 2705Biedenharn, L.C., Rose, M.E., (1953) Rev. Mod. Phys., 25, p. 729Simon, A., (1953) Phys. Rev., 92, p. 1050Simon, A., Welton, T.A., (1953) Phys. Rev., 90, p. 1036Simon, A., Welton, T.A., (1954) Phys. Rev., 93, p. 1435Fano, U., (1957) Rev. Mod. Phys., 29, p. 74Fano, U., Racah, G., (1959) Irreducible Tensorial Sets, , Academic, New YorkBiedenharn, L.C., (1960) Nuclear Spectroscopy, Part B, , edited by F. Azjenberg-Selove Academic, New YorkBiedenharn, L.C., Louck, J.D., (1981) Angular Momentum in Quantum Physics: Theory and Application, , Addison-Wesley, Reading, MADixon, R.N., (1986) J. Chem. Phys., 85, p. 1866Glass-Maujean, M., Beswick, J.A., (1989) J. Chem. Soc. Faraday Trans., 85, p. 983Beswick, J.A., Glass-Maujean, M., Roncero, O., (1992) J. Chem. Phys., 96, p. 7514Roncero, O., Villarreal, P., Delgado-Barrio, G., Halberstadt, N., Beswick, J.A., (1994) J. Phys. Chem., 98, p. 3307Siebbeles, L.D.A., Glass-Maujean, M., Vasyutinskii, O.S., Beswick, J.A., Roncero, O., (1994) J. Chem. Phys., 100, p. 3610Cherepkov, N.A., (1983) Adv. At. Mol. Phys., 19, p. 395Golovin, A.V., Kusnetsov, V.V., Cherepkov, N.A., (1990) Sov. Tech. Phys. Lett., 16, p. 363Reid, K.L., Leahy, D.J., Zare, R.N., (1991) J. Chem. Phys., 95, p. 1746Büchner, M., Raseev, G., Cherepkov, N.A., (1992) J. Chem. Phys., 96, p. 2691Leahy, D.J., Reid, K.L., Park, H., Zare, R.N., (1992) J. Chem. Phys., 97, p. 4948Kinsey, J.L., Riehl, J.W., Waugh, J.S., (1968) J. Chem. Phys., 49, p. 52Rowe, M.D., McCaffery, A.J., (1979) Chem. Phys., 43, p. 35Monchick, L., (1981) J. Chem. Phys., 75, p. 3377Alexander, M.H., Davis, S.L., (1983) J. Chem. Phys., 78, p. 6754McCaffery, A.J., Proctor, M.J., Seddon, E.A., Ticktin, A., (1986) Chem. Phys. Lett., 132, p. 185Follmeg, B., Rosmus, P., Werner, H.J., (1990) J. Chem. Phys., 93, p. 4687Case, D.A., Herschbach, D.R., (1975) Mol. Phys., 30, p. 1537Case, D.A., McClelland, G.M., Herschbach, D.R., (1978) Mol. Phys., 35, p. 541McClelland, G.M., Herschbach, D.R., (1979) J. Phys. Chem., 83, p. 1445Kim, S.K., Herschbach, D.R., (1987) Faraday Discuss. Chem. Soc., 84, p. 159Shafer-Ray, N.E., Orr-Ewing, A.J., Zare, R.N., (1995) J. Phys. Chem., 99, p. 7591Aoiz, F.J., Brouard, M., Enriquez, P.A., (1996) J. Chem. Phys., 105, p. 4964Schatz, G.C., (1996) J. Phys. Chem., 100, p. 12839Moore, C.B., Smith, I.W.M., (1996) J. Phys. Chem., 100, p. 12848Miller, W.H., (1990) Annu. Rev. Phys. Chem., 41, p. 245Truhlar, D.G., Wyatt, R.E., (1976) Annu. Rev. Phys. Chem., 27, p. 1Valentini, J.J., Philips, D.L., (1989) Advances in Gas-Phase Photochemistry and Kinetics - Bimolecular Collisions, , edited by M. N. R. Ashfold and J. E. Barggott Royal Society of Chemistry, LondonBuchenau, H., Toennies, J.P., Arnold, J., Wolfrum, J., (1990) Ber. Bunsenges. Phys. Chem., 94, p. 1231Kitsopoulos, T.N., Buntine, M.A., Baldwin, D.P., Zare, R.N., Chandler, D.W., (1993) Science, 260, p. 1605D'Mello, M.J., Manolopoulos, D.W., Wyatt, R.E., (1994) Science, 263, p. 102Schnieder, L., Seekamp-Rahn, K., Borkowski, J., Wrede, E., Welge, K.H., Aoiz, F.J., Bañares, L., Wyatt, R.E., (1995) Science, 269, p. 207Wu, Y.-S.M., Kuppermann, A., (1995) Chem. Phys. Lett., 235, p. 105Kuppermann, A., Wu, Y.-S.M., (1995) Chem. Phys. Lett., 241, p. 229Zare, R.N., (1988) Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, , Wiley, New YorkAuzinsh, M., Ferber, R., (1995) Optical Polarization of Molecules, , Cambridge U. P., CambridgeHertell, I.V., Stoll, W., (1978) Adv. At. Mol. Phys., 13, p. 113Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K., (1988) Quantum Theory of Angular Momentum, , World Scientific, SingaporeAuzinsh, M., Am. J. Phys., , submittedNasyrov, K.A., Shalagin, A.M., (1981) Sov. Phys. JETP, 54, p. 877Auzinsh, M.P., Nasyrov, K.A., Tamanis, M.Y., Ferber, R.S., Shalagin, A.M., (1987) Sov. Phys. JETP, 65, p. 891Greene, C.H., Zare, R.N., (1982) Annu. Rev. Phys. Chem., 33, p. 119Liu, B., (1973) J. Chem. Phys., 58, p. 1924Siegbahn, P., Liu, B., (1978) J. Chem. Phys., 68, p. 2457Truhlar, D.G., Horowitz, C.J., (1978) J. Chem. Phys., 68, p. 2466(1979) J. Chem. Phys., 71, p. 1514Castillo, J.F., Manolopoulos, D.E., Stark, K., Werner, H.-J., (1996) J. Chem. Phys., 104, p. 6531D'Mello, M.J., Manolopoulos, D.E., Wyatt, R.E., (1991) J. Chem. Phys., 94, p. 5965Wrede, E., Schnieder, L., (1997) J. Chem. Phys., 107, p. 78
Methyl mercury in Lake Superior: Offshore processes and bioaccumulation
The effects of watershed type exert a strong influence on the speciation of mercury and
the delivery of mercury to Lake Superior nearshore waters. As a consequence, tributary mixing
zones are important locations for enhanced bioaccumulation in Lake Superior. Methyl Hg
(MeHg) bioaccumulation, however, is also observed in regions of the lake that are remote from
tributary influences. Three cruises aboard the USEPA vessel R/VLake Guardian on Lake
Superior revealed that offshore concentrations of total mercury (HgT) were low, similar to Lake
Michigan and oceanic waters (0.21 – 1.0 ng L HgT). During August 2000, MeHg averaged
3.0 – 12.6 pg L, at least an order of magnitude lower than most tributaries during typical flow
régimes. Despite these differences, initial comparisons of phytoplankton revealed only a two to
threefold enrichment of MeHg in tributary mixing zones versus offshore regions. MeHg inputs to
the open waters of the lake are dependent on three processes: mixing from nearshore zones, direct
atmospheric inputs and MeHg diffusion from sediments. Direct sedimentary methylation rates are
extremely low and modeling efforts suggest that photodegradation would eliminate tributaryderived
MeHg. Therefore, we conclude that atmospheric sources strongly influence MeHg uptake
in offshore zones. A detailed profile at a deep-lake station in August 2001 suggests enhanced
bioaccumulation at a subsurface chlorophyll maximum, in a zone with close contact to
atmospheric fluxes
Two applications of the Divide & Conquer principle in the molecular sciences
Brinkmann G, Dress A, Perrey SW, Stoye J. Two applications of the Divide & Conquer principle in the molecular sciences. Mathematical programming. 1997;79(1-3):71-97.In this paper, two problems from the molecular sciences are addressed: the enumeration of fullerene-type isomers and the alignment of biosequences. We report on two algorithms dealing with these problems both of which are based on the well-known and widely used Divide & Conquer principle. In other words, our algorithms attack the original problems by associating with them an appropriate number of much simpler problems whose solutions can be "glued together" to yield solutions of the original, rather complex tasks. The considerable improvements achieved this way exemplify that the present day molecular sciences offer many worthwile opportunities for the effective use of fundamental algorithmic principles and architectures
Dependence of the scattering length for hydrogen atoms on effective mass
The possibility that the non-adiabatic correction to the scattering length of a pair of hydrogen atoms interacting via the ground state molecular potential, X1Σg +, of H2 could be made by replacing the mass of each nucleus by a different effective mass is explored. The Born-Oppenheimer potential with adiabatic, relativistic and radiative corrections is used in calculations of the scattering lengths and the mass-dependent shifts of the rotationless vibrational levels with fixed and varying effective masses. The shifts are compared with established values and it is demonstrated that the semi-classical formula for the scattering length accounts well for the effect of changing the mass. A perturbing potential that is equivalent to a change in mass is derived and it is compared to a published local non-adiabatic potential