663 research outputs found

    Psychoeducational intervention for people at high risk of developing another melanoma: a pilot randomised controlled trial

    Get PDF
    Introduction Information and psychological needs have been reported as one of the greatest areas of unmet needs for patients with melanoma. To respond to these needs, we developed the Melanoma Care Intervention, a developed psychoeducational intervention for people at high risk of developing another melanoma comprising of a newly developed melanoma educational booklet and individually tailored telephone support sessions provided by trained psychologists. The purpose of this study was to investigate the acceptability and feasibility of the Melanoma Care Intervention. Methods Twenty-four adults (14 men, 10 women, mean age: 58 years, SD: 12.2) at high risk of developing a subsequent primary melanoma were recruited and randomly assigned 1:1 to the intervention (a psychoeducational booklet, a Cancer Council booklet on melanoma and up to five telephone-based sessions with a psychologist) or usual care (Cancer Council booklet only). Acceptability, feasibility, fear of cancer recurrence and secondary psychosocial outcomes were assessed at baseline, 1 and 6 months. Results Satisfaction and perceived benefits were rated highly for all intervention components, particularly the telephone-based psychology sessions (mean satisfaction and benefits: both 9.27 out of 10, SD=2.41). The quality of information and support provided throughout the trial was rated as ‘high’ by the intervention group, with a mean score of 4.6 out of a possible 5 (SD=0.9) and 4.2 (SD=1.2) for the control group. Conclusions The intervention was feasible and acceptable for improving psychological adjustment. Timely access to effective, evidence-based, psychological care is a recognised need for people with melanoma. The intervention is designed to directly address this need in a way that is feasible in a clinical setting, acceptable to patients and health professionals

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Asymptotic Flatness, Little String Theory, and Holography

    Get PDF
    We argue that any non-gravitational holographic dual to asymptotically flat string theory in dd-dimensions naturally resides at spacelike infinity. Since spacelike infinity can be resovled as a (d1)(d-1)-dimensional timelike hyperboloid (i.e., as a copy of de Sitter space in (d1)(d-1) dimensions), the dual theory is defined on a Lorentz signature spacetime. Conceptual issues regarding such a duality are clarified by comparison with linear dilaton boundary conditions, such as those dual to little string theory. We compute both time-ordered and Wightman boundary 2-point functions of operators dual to massive scalar fields in the asymptotically flat bulk.Comment: 27 pages, 2 figures. Explicit discussion added of using the Wightman function method to calculate time-ordered boundary 2-point functions. The resulting branch cuts are linked to the bulk spectrum of state

    DCC dynamics with the SU(3) linear sigma model

    Get PDF
    The SU(3) extension of the linear sigma model is employed to elucidate the effect of including strangeness on the formation of disoriented chiral condensates. By means of a Hartree factorization, approximate dispersion relations for the 18 scalar and pseudoscalar meson species are derived and their self-consistent solution makes it possible to trace out the thermal path of the two order parameters as well as delineate the region of instability within which spontaneous pair creation becomes possible. The results depend significantly on the employed sigma mass, with the highest values yielding the largest regions of instability. An approximate solution of the equations of motion for the order parameter in scenarios emulating uniform scaling expansions show that even with a rapid quench only the pionic modes grow unstable. Nevertheless, the rapid and oscillatory relaxation of the order parameters leads to enhanced production of both pions and (to a lesser degree) kaons.Comment: 29 pages, RevTeX, 11 postscript figures, discussion about anomaly term adde

    Generating Neutrino Mass in the 331 Model

    Get PDF
    A mechanism for generating small tree-level Majorana mass for neutrinos is implemented in the 331 Model. No additional fermions or scalars need to be added, and no mass scale greater than a few TeV is invoked.Comment: LaTex, 7 pages, no figures. Revised version to appear in Phys. Rev.

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen

    Field theory description of vacuum replicas

    Get PDF
    In this paper we develop a systematic quantum field theory based approach to the vacuum replica recently found to exist in effective low energy models in hadronic physics. A local operator creating the replica state is constructed explicitly. We show that a new effective quark-quark force arises in result of replica existence. Phenomenological implications of such a force are also briefly discussed.Comment: RevTeX4, 23 pages, 4 Postscript figures, uses epsfig.sty, to appear in Phys.Rev.

    The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This is accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of the lepton number. We identify the Majoron as a singlet under SUL(2)UY(1)SU_L(2)\otimes U_Y(1) symmetry, which makes it safe under the current bounds imposed by electroweak data. The main result of this work is that the seesaw mechanism works already at TeV scale with the outcome that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analysis concerning detection sensitivity at LHC, we conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure

    Observation of the Higgs Boson of strong interaction via Compton scattering by the nucleon

    Get PDF
    It is shown that the Quark-Level Linear σ\sigma Model (QLLσ\sigmaM) leads to a prediction for the diamagnetic term of the polarizabilities of the nucleon which is in excellent agreement with the experimental data. The bare mass of the σ\sigma meson is predicted to be mσ=666m_\sigma=666 MeV and the two-photon width Γ(σγγ)=(2.6±0.3)\Gamma(\sigma\to\gamma\gamma)=(2.6\pm 0.3) keV. It is argued that the mass predicted by the QLLσ\sigmaM corresponds to the γγσNN\gamma\gamma\to\sigma\to NN reaction, i.e. to a tt-channel pole of the γNNγ\gamma N\to N\gamma reaction. Large -angle Compton scattering experiments revealing effects of the σ\sigma meson in the differential cross section are discussed. Arguments are presented that these findings may be understood as an observation of the Higgs boson of strong interaction while being part of the constituent quark.Comment: 17 pages, 6 figure
    corecore