259 research outputs found
Cosmological dynamics in tomographic probability representation
The probability representation for quantum states of the universe in which
the states are described by a fair probability distribution instead of wave
function (or density matrix) is developed to consider cosmological dynamics.
The evolution of the universe state is described by standard positive
transition probability (tomographic transition probability) instead of the
complex transition probability amplitude (Feynman path integral) of the
standard approach. The latter one is expressed in terms of the tomographic
transition probability. Examples of minisuperspaces in the framework of the
suggested approach are presented. Possibility of observational applications of
the universe tomographs are discussed.Comment: 16 page
Tomographic entropy and cosmology
The probability representation of quantum mechanics including propagators and
tomograms of quantum states of the universe and its application to quantum
gravity and cosmology are reviewed. The minisuperspaces modeled by oscillator,
free pointlike particle and repulsive oscillator are considered. The notion of
tomographic entropy and its properties are used to find some inequalities for
the tomographic probability determining the quantum state of the universe. The
sense of the inequality as a lower bound for the entropy is clarified.Comment: 19 page
Single neuron transient activity detection by means of tomography
From Twentieth Annual Computational Neuroscience Meeting: CNS*2011
Stockholm, Sweden. 23-28 July 2011(CA) and (ES) are supported by BFU2009-08473. (CA) and (PP) are partially
supported by AYA2009-14212-05.
(PP) is partially supported by TIN2010-21575-C02-01
Quantum mechanics on non commutative spaces and squeezed states: a functional approach
We review here the quantum mechanics of some noncommutative theories in which
no state saturates simultaneously all the non trivial Heisenberg uncertainty
relations. We show how the difference of structure between the Poisson brackets
and the commutators in these theories generically leads to a harmonic
oscillator whose positions and momenta mean values are not strictly equal to
the ones predicted by classical mechanics.
This raises the question of the nature of quasi classical states in these
models. We propose an extension based on a variational principle. The action
considered is the sum of the absolute values of the expressions associated to
the non trivial Heisenberg uncertainty relations. We first verify that our
proposal works in the usual theory i.e we recover the known Gaussian functions.
Besides them, we find other states which can be expressed as products of
Gaussians with specific hyper geometrics.
We illustrate our construction in two models defined on a four dimensional
phase space: a model endowed with a minimal length uncertainty and the non
commutative plane. Our proposal leads to second order partial differential
equations. We find analytical solutions in specific cases. We briefly discuss
how our proposal may be applied to the fuzzy sphere and analyze its
shortcomings.Comment: 15 pages revtex. The title has been modified,the paper shortened and
misprints have been corrected. Version to appear in JHE
Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics
The tomographic picture of quantum mechanics has brought the description of
quantum states closer to that of classical probability and statistics. On the
other hand, the geometrical formulation of quantum mechanics introduces a
metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure
states. By putting these two aspects together, we show that the Fisher
information metric, both classical and quantum, can be described by means of
the Hermitian tensor on the manifold of pure states.Comment: 8 page
Tomographic Representation of Minisuperspace Quantum Cosmology and Noether Symmetries
The probability representation, in which cosmological quantum states are
described by a standard positive probability distribution, is constructed for
minisuperspace models selected by Noether symmetries. In such a case, the
tomographic probability distribution provides the classical evolution for the
models and can be considered an approach to select "observable" universes. Some
specific examples, derived from Extended Theories of Gravity, are worked out.
We discuss also how to connect tomograms, symmetries and cosmological
parameters.Comment: 15 page
Detection model based on representation of quantum particles by classical random fields: Born's rule and beyond
Recently a new attempt to go beyond quantum mechanics (QM) was presented in
the form of so called prequantum classical statistical field theory (PCSFT).
Its main experimental prediction is violation of Born's rule which provides
only an approximative description of real probabilities. We expect that it will
be possible to design numerous experiments demonstrating violation of Born's
rule. Moreover, recently the first experimental evidence of violation was found
in the triple slits interference experiment, see \cite{WWW}. Although this
experimental test was motivated by another prequantum model, it can be
definitely considered as at least preliminary confirmation of the main
prediction of PCSFT. In our approach quantum particles are just symbolic
representations of "prequantum random fields," e.g., "electron-field" or
"neutron-field"; photon is associated with classical random electromagnetic
field. Such prequantum fields fluctuate on time and space scales which are
essentially finer than scales of QM, cf. `t Hooft's attempt to go beyond QM
\cite{H1}--\cite{TH2}. In this paper we elaborate a detection model in the
PCSFT-framework. In this model classical random fields (corresponding to
"quantum particles") interact with detectors inducing probabilities which match
with Born's rule only approximately. Thus QM arises from PCSFT as an
approximative theory. New tests of violation of Born's rule are proposed.Comment: Relation with recent experiment on violation of Born's rule in the
triple slit experiment is discussed; new experimental test which might
confirm violation of Born's rule are presented (double stochsticity test and
interference magnitude test); the problem of "double clicks" is discusse
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
- …