67 research outputs found

    Quantum compiling with diffusive sets of gates

    Full text link
    Given a set of quantum gates and a target unitary operation, the most elementary task of quantum compiling is the identification of a sequence of the gates that approximates the target unitary to a determined precision ε\varepsilon. Solovay-Kitaev theorem provides an elegant solution which is based on the construction of successively tighter `nets' around the unity comprised by successively longer sequences of gates. The procedure for the construction of the nets, according to this theorem, requires accessibility to the inverse of the gates as well. In this work, we propose a method for constructing nets around unity without this requirement. The algorithmic procedure is applicable to sets of gates which are diffusive enough, in the sense that sequences of moderate length cover the space of unitary matrices in a uniform way. We prove that the number of gates sufficient for reaching a precision ε\varepsilon scales as log(1/ε)log3/log2 \log (1/\varepsilon )^{\log 3 / log 2} while the pre-compilation time is increased as compared to thatof the Solovay-Kitaev algorithm by the exponential factor 3/2.Comment: 6 pages, several corrections in text, figures & bibliograph

    Probabilistic Quantum Control Via Indirect Measurement

    Full text link
    The most basic scenario of quantum control involves the organized manipulation of pure dynamical states of the system by means of unitary transformations. Recently, Vilela Mendes and Mank'o have shown that the conditions for controllability on the state space become less restrictive if unitary control operations may be supplemented by projective measurement. The present work builds on this idea, introducing the additional element of indirect measurement to achieve a kind of remote control. The target system that is to be remotely controlled is first entangled with another identical system, called the control system. The control system is then subjected to unitary transformations plus projective measurement. As anticipated by Schrodinger, such control via entanglement is necessarily probabilistic in nature. On the other hand, under appropriate conditions the remote-control scenario offers the special advantages of robustness against decoherence and a greater repertoire of unitary transformations. Simulations carried out for a two-level system demonstrate that, with optimization of control parameters, a substantial gain in the population of reachable states can be realized.Comment: 9 pages, 2 figures; typos added, reference added, reference remove

    Description of Quantum Entanglement with Nilpotent Polynomials

    Full text link
    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed.Comment: 40 pages, 7 figures, 1 table, submitted for publication. v2: section II.E has been changed and the Appendix on "Four qubit sl-entanglement measure" has been removed. There are changes in the notation of section IV. Typos and language mistakes has been corrected. A figure has been added and a figure has been replaced. The references have been update

    Cooperative behavior of qutrits with dipole-dipole interactions

    Full text link
    We have identified a class of many body problems with analytic solution beyond the mean-field approximation. This is the case where each body can be considered as an element of an assembly of interacting particles that are translationally frozen multi-level quantum systems and that do not change significantly their initial quantum states during the evolution. In contrast, the entangled collective state of the assembly experiences an appreciable change. We apply this approach to interacting three-level systems.Comment: 5 pages, 3 figures. Minor correction

    An alternative representation for symmetric states of qubits

    Get PDF
    Symmetric states span the same space as spin J systems, are of use in quantum optics and form a good test-ground for quantum theory. The proposed decomposition sheds new light on our understanding of these states, and provides a new mathematical tool for representing and eventually manipulating them

    An alternative representation for symmetric states of qubits

    Get PDF
    Symmetric states span the same space as spin J systems, are of use in quantum optics and form a good test-ground for quantum theory. The proposed decomposition sheds new light on our understanding of these states, and provides a new mathematical tool for representing and eventually manipulating them
    corecore