69 research outputs found

    Statistical Analysis of the Processes Controlling Choline and Ethanolamine Glycerophospholipid Molecular Species Composition

    Get PDF
    The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2 positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous approach to determine cooperativity based on a modified Fisher's exact test using Markov Chain Monte Carlo sampling. This computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation

    Budd-Chiari Syndrome: Long term success via hepatic decompression using transjugular intrahepatic porto-systemic shunt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Budd-Chiari syndrome (BCS) generally implies thrombosis of the hepatic veins and/or the intrahepatic or suprahepatic inferior vena cava. Treatment depends on the underlying cause, the anatomic location, the extent of the thrombotic process and the functional capacity of the liver. It can be divided into medical treatment including anticoagulation and thrombolysis, radiological procedures such as angioplasty and transjugular intrahepatic porto-systemic shunt (TIPS) and surgical interventions including orthotopic liver transplantation (OLT). Controlled trials or reports on larger cohorts are limited due to rare disease frequency. The aim of this study was to report our single centre long term results of patients with BCS receiving one of three treatment options i.e. medication only, TIPS or OLT on an individually based decision of our local expert group.</p> <p>Methods</p> <p>20 patients with acute, subacute or chronic BCS were treated between 1988 and 2008. Clinical records were analysed with respect to underlying disease, therapeutic interventions, complications and overall outcome.</p> <p>Results</p> <p>16 women and 4 men with a mean age of 34 ± 12 years (range: 14-60 years) at time of diagnosis were included. Myeloproliferative disorders or a plasmatic coagulopathy were identified as underlying disease in 13 patients, in the other patients the cause of BCS remained unclear. 12 patients presented with an acute BCS, 8 with a subacute or chronic disease. 13 patients underwent TIPS, 4 patients OLT as initial therapy, 2 patients required only symptomatic therapy, and one patient died from liver failure before any specific treatment could be initiated. Eleven of 13 TIPS patients required 2.5 ± 2.4 revisions (range: 0-8). One patient died from his underlying hematologic disease. The residual 12 patients still have stable liver function not requiring OLT. All 4 patients who underwent OLT as initial treatment, required re-OLT due to thrombembolic complications of the graft. Survival in the TIPS group was 92.3% and in the OLT group 75% during a median follow-up of 4 and 11.5 years, respectively.</p> <p>Conclusion</p> <p>Our results confirm the role of TIPS in the management of patients with acute, subacute and chronic BCS. The limited number of patients with OLT does not allow to draw a meaningful conclusion. However, the underlying disease may generate major complications, a reason why OLT should be limited to patients who cannot be managed by TIPS.</p

    Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study

    Get PDF
    BACKGROUND Amyotrophic lateral sclerosis (ALS) is a primary progressive neurodegenerative disease characterised by neuronal loss of lower motor neurons (in the spinal cord and brainstem) and/or upper motor neurons (in the motor cortex) and subsequent denervation atrophy of skeletal muscle. AIM A comprehensive examination of muscle pathology from a cohort of clinically confirmed ALS patients, including an investigation of inflammation, complement activation, and deposition of abnormal proteins in order to compare them with findings from an age-matched, control group. MATERIAL AND METHODS 31 muscle biopsies from clinically confirmed ALS patients and 20 normal controls underwent a comprehensive protocol of histochemical and immunohistochemical stains, including HLA-ABC, C5b-9, p62, and TDP-43. RESULTS Neurogenic changes were confirmed in 30/31 ALS cases. In one case, no neurogenic changes could be detected. Muscle fibre necrosis was seen in 5/31 cases and chronic mononuclear inflammatory cell infiltration in 5/31 (2 of them overlapped with those showing muscle necrosis). In four biopsies there was an increase in the proportion of cytochrome oxidase (COX) negative fibres (2-3%). p62 faintly stained cytoplasmic bodies in eight cases and none were immunoreactive to TDP-43. CONCLUSION This large series of muscle biopsies from patients with ALS demonstrates neurogenic atrophy is a nearly uniform finding and that mild mitochondrial abnormalities and low-grade inflammation can be seen and do not rule out the diagnosis of ALS. These findings could lend support to the notion that ALS is a complex and heterogeneous disorder

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
    • …
    corecore