69 research outputs found

    Specific binding of okadaic acid, a new tumor promoter in mouse skin

    Get PDF
    AbstractThe tumor promoter okadaic acid binds specifically to a particulate as well as a cytosolic fraction of various mouse tissues, e.g., skin, brain, lung and colon. The KD value was 21.7 nM for receptors in the particulate fraction and 1.0 nM for those in the cytosolic fraction of mouse skin. The specific binding of [3H]okadaic acid to the particulate fraction of mouse skin was inhibited dose-dependently by okadaic acid, but not okaidaic acid tetramethyl ether, an inactive compound, or by other tumor promoters, such as 12-O-tetradecanoylphorbol-13-acetate and teleocidin. The results suggest a new pathway of tumor promotion mediated through the okadaic acid receptor(s)

    Nicotiana benthamiana RanBP1-1 Is Involved in the Induction of Disease Resistance via Regulation of Nuclear-Cytoplasmic Transport of Small GTPase Ran

    Get PDF
    Plant cells enhance the tolerances to abiotic and biotic stresses via recognition of the stress, activation and nuclear import of signaling factors, up-regulation of defense genes, nuclear export of mRNA and translation of defense proteins. Nuclear pore-mediated transports should play critical roles in these processes, however, the regulatory mechanisms of nuclear-cytoplasmic transport during stress responses are largely unknown. In this study, a regulator of nuclear export of RNA and proteins, NbRanBP1-1 (Ran-binding protein1-1), was identified as an essential gene for the resistance of Nicotiana benthamiana to potato blight pathogen Phytophthora infestans. NbRanBP1-1-silenced plants showed delayed accumulation of capsidiol, a sesquiterpenoid phytoalexin, in response to elicitor treatment, and reduced resistance to P. infestans. Abnormal accumulation of mRNA was observed in NbRanBP1-1-silenced plants, indicating that NbRanBP1-1 is involved in the nuclear export of mRNA. In NbRanBP1-1-silenced plants, elicitor-induced expression of defense genes, NbEAS and NbWIPK, was not affected in the early stage of defense induction, but the accumulation of NbWIPK protein was reduced. Nuclear export of the small G-protein NbRan1a was activated during the induction of plant defense, whereas this process was compromised in NbRanBP1-1-silenced plants. Silencing of genes encoding the nuclear pore proteins, Nup75 and Nup160, also caused abnormal nuclear accumulation of mRNA, defects in the nuclear export of NbRan1a, and reduced production of capsidiol, resulting in decreased resistance to P. infestans. These results suggest that nuclear export of NbRan is a key event for defense induction in N. benthamiana, and both RanBP1-1 and nucleoporins play important roles in the process

    Botrytis cinerea tolerates phytoalexins produced by Solanaceae and Fabaceae plants through an efflux transporter BcatrB and metabolizing enzymes

    Get PDF
    Botrytis cinerea, a plant pathogenic fungus with a wide host range, has reduced sensitivity to fungicides as well as phytoalexins, threatening cultivation of economically important fruits and vegetable crops worldwide. B. cinerea tolerates a wide array of phytoalexins, through efflux and/or enzymatic detoxification. Previously, we provided evidence that a distinctive set of genes were induced in B. cinerea when treated with different phytoalexins such as rishitin (produced by tomato and potato), capsidiol (tobacco and bell pepper) and resveratrol (grape and blueberry). In this study, we focused on the functional analyses of B. cinerea genes implicated in rishitin tolerance. LC/MS profiling revealed that B. cinerea can metabolize/detoxify rishitin into at least 4 oxidized forms. Heterologous expression of Bcin08g04910 and Bcin16g01490, two B. cinerea oxidoreductases upregulated by rishitin, in a plant symbiotic fungus Epichloë festucae revealed that these rishitin-induced enzymes are involved in the oxidation of rishitin. Expression of BcatrB, encoding an exporter of structurally unrelated phytoalexins and fungicides, was significantly upregulated by rishitin but not by capsidiol and was thus expected to be involved in the rishitin tolerance. Conidia of BcatrB KO (ΔbcatrB) showed enhanced sensitivity to rishitin, but not to capsidiol, despite their structural similarity. ΔbcatrB showed reduced virulence on tomato, but maintained full virulence on bell pepper, indicating that B. cinerea activates BcatrB by recognizing appropriate phytoalexins to utilize it in tolerance. Surveying 26 plant species across 13 families revealed that the BcatrB promoter is mainly activated during the infection of B. cinerea in plants belonging to the Solanaceae, Fabaceae and Brassicaceae. The BcatrB promoter was also activated by in vitro treatments of phytoalexins produced by members of these plant families, namely rishitin (Solanaceae), medicarpin and glyceollin (Fabaceae), as well as camalexin and brassinin (Brassicaceae). Consistently, ΔbcatrB showed reduced virulence on red clover, which produces medicarpin. These results suggest that B. cinerea distinguishes phytoalexins and induces differential expression of appropriate genes during the infection. Likewise, BcatrB plays a critical role in the strategy employed by B. cinerea to bypass the plant innate immune responses in a wide variety of important crops belonging to the Solanaceae, Brassicaceae and Fabaceae

    Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur

    Get PDF
    Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life

    Genomic Analysis of the Rare Slightly Halophilic Myxobacterium “<i>Paraliomyxa miuraensis</i>” SMH-27-4, the Producer of the Antibiotic Miuraenamide A

    No full text
    Halophilic/halotolerant myxobacteria are extremely rare bacteria but an important source of novel bioactive secondary metabolites as drug leads. A slightly halophilic myxobacterium, “Paraliomyxa miuraensis” SMH-27-4, the producer of the antifungal antibiotic miuraenamide A, was considered to represent a novel genus. This study aimed to use the whole-genome sequence of this difficult-to-culture bacterium to provide genomic evidence supporting its taxonomy and to explore its potential as a novel secondary metabolite producer and its predicted gene functions. The draft genome was sequenced and de novo assembled into 164 contigs (11.8 Mbp). The 16S rRNA gene sequence-based and genome sequence-based phylogenetic analyses supported that this strain represents a novel genus of the family Nannocystaceae. Seventeen biosynthetic gene clusters (BGCs) were identified, and only five of them show some degree of similarity with the previously annotated BGCs, suggesting the great potential of producing novel secondary metabolites. The comparative genomic analysis within the family Nannocystaceae revealed the distribution of its members’ gene functions. This study unveiled the novel genomic features and potential of the secondary metabolite production of this myxobacterium

    Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase

    Get PDF
    AbstractFirefly luciferase can catalyze the formation of fatty acyl-CoA via fatty acyl-adenylate from fatty acid in the presence of ATP, Mg2+ and coenzyme A (CoA). A long chain fatty acyl-CoA (C16–C20), produced by luciferase from a North American firefly (Photinus pyralis) and a Japanese firefly (Luciola cruciata), was isolated and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Of a number of substrates tested, linolenic acid (C18:3) and arachidonic acid (C20:4) appear to be suitable for acyl-CoA synthesis. This evidence suggests that firefly luciferase within peroxisomes of the cells in the photogenic organ may be a bifunctional enzyme, catalyzing not only the bioluminescence reaction but also the fatty acyl-CoA synthetic reaction

    The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites

    No full text
    ortho-Quinones are produced in vivo through the oxidation of catecholic substrates by enzymes such as tyrosinase or by transition metal ions. Neuromelanin, a dark pigment present in the substantia nigra and locus coeruleus of the brain, is produced from dopamine (DA) and norepinephrine (NE) via an interaction with cysteine, but it also incorporates their alcoholic and acidic metabolites. In this study we examined the metabolic fate of ortho-quinones derived from the catecholamine metabolites, 3,4-dihydroxyphenylethanol (DOPE), 3,4-dihydroxyphenylethylene glycol (DOPEG), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylmandelic acid (DOMA). The oxidation of catecholic substrates by mushroom tyrosinase was followed by UV-visible spectrophotometry. HPLC analysis after reduction with NaBH4 or ascorbic acid enabled measurement of the half-lives of ortho-quinones and the identification of their reaction products. Spectrophotometric examination showed that the ortho-quinones initially formed underwent extensive degradation at pH 6.8. HPLC analysis showed that DOPE-quinone and DOPEG-quinone degraded with half-lives of 15 and 30 min at pH 6.8, respectively, and &gt;100 min at pH 5.3. The major product from DOPE-quinone was DOPEG which was produced through the addition of a water molecule to the quinone methide intermediate. DOPEG-quinone yielded a ketone, 2-oxo-DOPE, through the quinone methide intermediate. DOPAC-quinone and DOMA-quinone degraded immediately with decarboxylation of the ortho-quinone intermediates to form 3,4-dihydroxybenzylalcohol (DHBAlc) and 3,4-dihydroxybenzaldehyde (DHBAld), respectively. DHBAlc-quinone was converted to DHBAld with a half-life of 9 min, while DHBAld-quinone degraded rapidly with a half-life of 3 min. This study confirmed the fact that ortho-quinones from DOPE, DOPEG, DOPAC and DOMA are converted to quinone methide tautomers as common intermediates, through proton rearrangement or decarboxylation. The unstable quinone methides afford stable alcoholic or carbonyl products

    New Crambescidin-Type Alkaloids from the Indonesian Marine Sponge Clathria bulbotoxa

    No full text
    A crude methanolic extract of the Indonesian sponge Clathria bulbotoxa showed a potent cytotoxic activity against the human epidermoid carcinoma A431 cells. An investigation of the active components led to the isolation of three new compounds named crambescidins 345 (1), 361 (2), and 373 (3), together with the known related metabolites crambescidins 359 (4), 657 (5), and 800 (6). The structures of the compounds were determined by spectroscopic analysis. These compounds 1–4 that possess a simple pentacyclic guanidine core exhibited moderate cytotoxicity against the A431 cells with the IC50 values of 7.0, 2.5, 0.94, and 3.1 μM, respectively, while the known compounds 5 and 6 that possess a long aliphatic side chain were found to be significantly cytotoxic. On the other hand, in an anti-oomycete activity test against the fungus-like plant pathogen Phytophthora capsici, 1–4 showed a higher activity than that of 5 and 6, suggesting that the long aliphatic side chain plays a significant role for cytotoxicity, but is not effective or suppressive for anti-oomycete activity
    corecore