7,849 research outputs found
Where is the pseudoscalar glueball ?
The pseudoscalar mesons with the masses higher than 1 GeV are assumed to
belong to the meson decuplet including the glueball as the basis state
supplementing the standard nonet of light states
. The decuplet is investigated by means of an algebraic approach based
on hypothesis of vanishing the exotic commutators of "charges" and
their time derivatives. These commutators result in a system of equations
determining contents of the isoscalar octet state in the physical isoscalar
mesons as well as the mass formula including all masses of the decuplet:
, K(1460), , and . The physical
isoscalar mesons , are expressed as superpositions of the "ideal"
states ( and ) and the glueball with the mixing
coefficient matrix following from the exotic commutator restrictions. Among
four one-parameter families of the calculated mixing matrix (numerous solutions
result from bad quality of data on the and K(1460) masses) there is
one family attributing the glueball-dominant composition to the
meson. Similarity between the pseudoscalar and scalar decuplets, analogy
between the whole spectra of the and mesons and affinity of
the glueball with excited states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors
withdraws his nam
Ergodic property of Markovian semigroups on standard forms of von Neumann algebras
We give sufficient conditions for ergodicity of the Markovian semigroups
associated to Dirichlet forms on standard forms of von Neumann algebras
constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to
show that the diffusion type Markovian semigroups for quantum spin systems are
ergodic in the region of high temperatures where the uniqueness of the
KMS-state holds.Comment: 25 page
Forces and atomic relaxations in the pSIC approach with ultrasoft pseudopotentials
We present the scheme that allows for efficient calculations of forces in the
framework of pseudopotential self-interaction corrected (pSIC) formulation of
the density functional theory. The scheme works with norm conserving and also
with ultrasoft pseudopotentials and has been implemented in the plane-wave
basis code {\sc quantum espresso}. We have performed tests of the internal
consistency of the derived expressions for forces considering ZnO and CeO
crystals. Further, we have performed calculations of equilibrium geometry for
LaTiO, YTiO, and LaMnO perovskites and also for Re and Mn pairs in
silicon. Comparison with standard DFT and DFT+U approaches shows that in the
cases where spurious self-interaction matters, the pSIC approach predicts
different geometry, very often closer to the experimental data.Comment: 11 pages, 2 figure
The Luminosity Function for L>L* Galaxies at z > 3
Through use of multiband (U, B, R, I) photometry we have isolated high
redshift (3.0<z<3.5) galaxy candidates in a survey of 1.27 deg^2 to R = 21.25
and a survey of 0.02 deg^2 to R = 23.5. Our pool of candidates constrains the
nature of the 3.0 < z < 3.5 luminosity function over the range L* < L < 100 L*,
if we grant a similar level of completeness to these data as for very faint
samples (to R = 25.5) selected in a similar fashion. Our constraints agree with
the high redshift sky density at R = 20.5 estimated from Yee et al.'s (1996)
serendipitous discovery of a bright, z = 2.7 galaxy, as well as the density at
R ~ 23 by Steidel et al. (1996b). We strongly rule out -- by more than two
orders of magnitude at M(R) = -25 -- the L > L* luminosity function for z = 3-5
galaxies obtained by a photometric redshift analysis of the Hubble Deep Field
(HDF) by Gwyn & Hartwick (1996). Our results at R ~ 23 are more consistent with
the photometric redshift analysis of the faint HDF galaxies by Sawicki & Yee
(1996), but our present upper limits at the brightest magnitudes (R < 21.5,
M(R) < -24) allow more generous volume densities of these super-L* galaxies.Comment: Accepted for publication in ApJ Letters; 14 pages Latex, including 3
figure
CADIS has seen the Virgo overdensity and parts of the Monoceros and `Orphan' streams in retrospect
We reanalyze deep star counts in five CADIS fields. The data are presented as
vertical density distributions of stars perpendicular to the Galactic plane. In
three fields the profiles are consistent with each other, while in two fields
significant overdensities of stars are found. The overdensity in one field can
be associated with the Virgo overdensity which can be traced right into the
disk of the Milky Way. Using this detection we estimate the mass of the Virgo
overdensity and show that this is equivalent to the stellar content of a Local
Group dwarf spheroidal galaxy. The overdensity in the second field is more
difficult to associate with a previously known overdensity. We suggest that it
is related both to the Monoceros stream and the recently discovered Orphan
stream.Comment: 4 pages, 3 figures, accepted as Research Note by Astron. Astrophy
On non-completely positive quantum dynamical maps on spin chains
The new arguments based on Majorana fermions indicating that non-completely
positive maps can describe open quantum evolution are presented.Comment: published; small change
The Carnegie Astrometric Planet Search Program
We are undertaking an astrometric search for gas giant planets and brown
dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at
the Las Campanas Observatory in Chile. We have built two specialized
astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S
and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras'
design having been optimized for high accuracy astrometry of M dwarf stars. We
describe two independent CAPSCam data reduction approaches and present a
detailed analysis of the observations to date of one of our target stars, NLTT
48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply
that astrometric accuracies of around 0.3 milliarcsec per hour are achievable,
sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf
10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100
nearby (primarily within about 10 pc) low mass stars, principally late M, L,
and T dwarfs, for 10 years or more, in order to detect very low mass companions
with orbital periods long enough to permit the existence of habitable,
Earth-like planets on shorter-period orbits. These stars are generally too
faint and red to be included in ground-based Doppler planet surveys, which are
often optimized for FGK dwarfs. The smaller masses of late M dwarfs also yield
correspondingly larger astrometric signals for a given mass planet. Our search
will help to determine whether gas giant planets form primarily by core
accretion or by disk instability around late M dwarf stars.Comment: 48 pages, 9 figures. in press, Publ. Astron. Soc. Pacifi
- …