1 research outputs found

    Study of the Mass Flow Rates on the Efficiency of Hybrid Thermal / Photvoltaique Sensor

    No full text
    Abstract Hybrid thermal/photovoltaic systems associating a solar concentrator with a heat exchanger are an effective way to improve solar energy conversion yield. We present here an analysis of the effect of the mass flow rates in such a collector. A numerical simulation of the performance of the thermal/photovoltaic sensor with a heat exchanger including fins attached to the absorber and using air as a coolant is presented. A thorough analysis of the influence of the mass flow rate on the efficiency and the working of a thermal/photovoltaic collector is presented. The analysis is made using the equations of the components of heat transfer cascade into a matrix of four unknown's which are the glass , cells, fluid and insulation plate temperature. This matrix is solved by the fixed point method and Gauss-Seidel, at the permanent regime. Results show that the overall conversion efficiency of the system is increasing from 27% to 65%, and the cell temperatures decreasing from 345°K to 335°K when mass flow rates varies from 0.02 kg/s to 0.1 kg/s
    corecore