20,601 research outputs found

    Low-energy moments of non-diagonal quark current correlators at four loops

    Full text link
    We compute the leading four physical terms in the low-energy expansions of heavy-light quark current correlators at four-loop order. As a by-product we reproduce the corresponding top-induced non-singlet correction to the electroweak rho parameter.Comment: 13 pages, no figures. Extended discussion and added reference

    Five-Loop Static Contribution to the Gravitational Interaction Potential of Two Point Masses

    Full text link
    We compute the static contribution to the gravitational interaction potential of two point masses in the velocity-independent five-loop (and 5th post-Newtonian) approximation to the harmonic coordinates effective action in a direct calculation. The computation is performed using effective field methods based on Feynman diagrams in momentum-space in d=3−2εd = 3 - 2\varepsilon space dimensions. We also reproduce the previous results including the 4th post-Newtonian order.Comment: 15 pages, 4 figure

    Effective three-particle interactions in low-energy models for multiband systems

    Full text link
    We discuss different approximations for effective low-energy interactions in multi-band models for weakly correlated electrons. In the study of Fermi surface instabilities of the conduction band(s), the standard approximation consists only keeping those terms in the bare interactions that couple only to the conduction band(s), while corrections due to virtual excitations into bands away from the Fermi surface are typically neglected. Here, using a functional renormalization group approach, we present an improved truncation for the treatment of the effective interactions in the conduction band that keeps track of the generated three-particle interactions (six-point term) and hence allows one to include important aspects of these virtual interband excitations. Within a simplified two-patch treatment of the conduction band, we demonstrate that these corrections can have a rather strong effect in parts of the phase diagram by changing the critical scales for various orderings and the phase boundaries.Comment: revised version, 16 pages, 13 figure

    Evolution of the neutron resonances in AFe2Se2

    Full text link
    Recent experiments on the alkali-intercalated iron selenides have raised questions about the symmetry of the superconducting phase. Random phase approximation calculations of the leading pairing eigenstate for a tight- binding 5-orbital Hubbard-Hund model of AFe2Se2 find that a d-wave (B1g) state evolves into an extended s{\pm} (A1g) state as the system is hole-doped. However, over a range of doping these two states are nearly degenerate. Here, we calculate the imaginary part of the magnetic spin susceptibility \chi"(q,{\omega}) for these gaps and discuss how the evolution of neutron scattering resonances can distinguish between them

    Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    Get PDF
    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large

    Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides

    Full text link
    We discuss the large gap anisotropy found for the A1g (s-wave) state in RPA spin-fluctuation and functional renormalization group calculations and show how the simple arguments leading to isotropic sign-switched s-wave states in these systems need to be supplemented by a consideration of pair scattering within Fermi surface sheets and between the individual electron sheets as well. In addition, accounting for the orbital makeup of the states on the Fermi surface is found to be crucial.Comment: 6 pages, 7 figure

    Isotropic-nematic phase equilibria of polydisperse hard rods: The effect of fat tails in the length distribution

    Full text link
    We study the phase behaviour of hard rods with length polydispersity, treated within a simplified version of the Onsager model. We give a detailed description of the unusual phase behaviour of the system when the rod length distribution has a "fat" (e.g. log-normal) tail up to some finite cutoff. The relatively large number of long rods in the system strongly influences the phase behaviour: the isotropic cloud curve, which defines the where a nematic phase first occurs as density is increased, exhibits a kink; at this point the properties of the coexisting nematic shadow phase change discontinuously. A narrow three-phase isotropic-nematic-nematic coexistence region exists near the kink in the cloud curve, even though the length distribution is unimodal. A theoretical derivation of the isotropic cloud curve and nematic shadow curve, in the limit of large cutoff, is also given. The two curves are shown to collapse onto each other in the limit. The coexisting isotropic and nematic phases are essentially identical, the only difference being that the nematic contains a larger number of the longest rods; the longer rods are also the only ones that show any significant nematic ordering. Numerical results for finite but large cutoff support the theoretical predictions for the asymptotic scaling of all quantities with the cutoff length.Comment: 21 pages, 13 figure
    • …
    corecore