176 research outputs found

    Screening Level of PAHs in Sediment Core from Lake Hongfeng, Southwest China

    Get PDF
    Using data from a 25-year retrospective of polycyclic aromatic hydrocarbons (PAHs) in sediment core from Lake Hongfeng, Southwest China, their possible sources and potential toxicologic significance were investigated. The total PAH concentrations (16 priority PAHs as proposed by the United States Environmental Protection Agency) in sediments ranged from 2936.1 to 5282.3 ng/g and gradually increased from the analyzed deeper sediments to surface sediments. PAHs were dominated by low molecular-weight components, especially phenanthrene (PHEN) and fluorene (FLU). However, a significantly increased number of high molecular-weight (HMW) PAHs was found in upper segments. The temporal trends of individual PAH species suggest that there may have been a change in energy use from low- to high-temperature combustion, especially after approximately 2001. PAH input to Lake Hongfeng originated mainly from domestic coal combustion and biomass burning, whereas fuel combustion characteristics have also been found in recent years. Sediment-quality assessment implied that potential adverse biologic impact could be a probability for most low-ring PAHs (including naphthalene, acenaphthylene, acenaphthylene, FLU, PHEN, and anthracene). Nevertheless, more concern should be paid to HMW PAHs in the future due to their rapidly increasing trends in upper sediments. Because only one core was analyzed in this study, more work is needed to confirm the sources and toxicity of PAHs in Lake Hongfeng

    Increasing polybrominated diphenyl ethers (PBDE) contamination in sediment cores from the Inner Clyde Estuary, U.K

    Get PDF
    The concentrations of 16 polybrominated diphenyl ether (PBDE) congeners in six short sediment cores from the Clyde Estuary were determined by gas-chromatography mass-spectrometry. Total PBDE concentrations ranged from 1 to 2,645 μg/kg and the average concentration was 287 μg/kg. BDE-209 was the main congener and varied from 1 to 2,337 μg/kg. Elevated total PBDE concentrations were observed close to the sediment surface in the uppermost 10 cm of four of the six sediment cores. Comparison of the down core PBDE profiles revealed that the increase was driven by the accumulation of deca-BDE. Although the deca-BDE mix was dominant, the presence of lower molecular weight congeners BDE-47, BDE-99, BDE-183 and BDE-153 at most sediment intervals suggested additional sources of penta-BDE and octa-BDE pollution. Changing PBDE source input was the major factor in influencing the proportion of nona-brominated congeners, although other explanations such as post burial photo-debromination of BDE-209 cannot be entirely discounted. A clear cascading to lower hepta-, hexa-, and penta-homologues was not found. The increase in total PBDE concentrations and particularly the deca-BDE may possibly be ascribed to the use and subsequent disposal of electrical appliances such as televisions and computers. In the Clyde sediments, the proportion of nona-brominated congeners was higher than that reported for commercial mixtures. This might be due to changing sources of PBDEs or post burial photo-debromination of BDE-209

    Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM2.5) in three regions of South China

    No full text
    Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) were investigated in fine particulate matter (PM2.5) collected from an urban site, a rural e-waste recycling (e-waste) site, and a background site in South China. Generally, the WSI concentrations were highest at the e-waste site and comparable at the other sites and secondary species (SO42-, NH4+, and NO3-) were dominant components at the three sites. The compositions and seasonal variations of WSIs at the e-waste site were distinct from those in the urban and background areas suggesting significant influence of e-waste recycling on PM2.5 components. Polybrominated diphenyl ethers (PBDEs) dominated the HFRs in PM2.5 from the e-waste site, and their concentrations (median = 883 pg/m(3)) were significantly higher than those at the urban (375 pg/m(3)) and background site (52.4 pg/m(3)). However, novel decabromodiphenyl ethane (DBDPE) was the primary HFRs in the urban air, with noticeably elevated concentrations (median = 356 pg/m(3)) compared to those in the other two areas (medians = 623 and 5.09 pg/m(3)). The composition profiles of HFRs in the background air followed those in the e-waste areas, with substantial contributions of legacy chemicals. This was explained by the prevailing NE wind, which favored atmospheric transport of HFRs from the e-waste recycling area to the background area. Correlation analysis showed that most HFRs in the urban air are associated with Cl-, implying an industrial emission sources. In the e-waste area, HFRs are associated with organic and elemental carbons (OC and EC) and K+, confirming a common source of e-waste recycling. Significant correlations between HFRs and EC and Cl- in the background air suggest that their occurrence in this region was attributed to both the e-waste and urban areas. (C) 2018 Elsevier Ltd. All rights reserved
    corecore