8 research outputs found
Bilingual Learning for Second and Third Generation Children
Throughout the English-speaking world, children from bilingual backgrounds are being educated in mainstream classrooms where they have little or no opportunity to use their mother tongue. Second and third generation children, in particular, are assumed to be learning sufficiently through English only. This study investigated how British Bangladeshi children, learning Bengali in after-school classes but mostly more fluent in English than in their mother tongue, responded when able to use their full language repertoire within the mainstream curriculum. Through action research with mainstream and community language class teachers, bilingual literacy and numeracy tasks were devised and carried out with pupils aged seven to eleven in two East London primary schools. The bilingual activities were videorecorded and analysed qualitatively to identify the strategies used. The following cognitive and cultural benefits of bilingual learning discovered by researchers in other contexts were also found to apply in this particular setting: conceptual transfer, enriched understanding through translation, metalinguistic awareness, bicultural knowledge and building bilingual learner identities. The findings suggest that second and third generation children should be enabled to learn bilingually, and appropriate strategies are put forward for use in the mainstream classroom
Neurobehavioral Alterations in Zebrafish Due to Long-Term Exposure to Low Doses of Inorganic Arsenic
Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project
PURPOSE:: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. METHODS:: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration. RESULTS:: As of December 1, 2010, 130 sites in 45 countries have uploaded a total of 25,114 percentile data points, 565,232 analyte results of true positive cases with 64 conditions, and 5,341 cutoff values. The average rate of submission of true positive cases between December 1, 2008, and December 1, 2010, was 5.1 cases/day. This cumulative evidence generated 91 high and 23 low cutoff target ranges. The overall proportion of cutoff values within the respective target range was 42% (2,269/5,341). CONCLUSION:: An unprecedented level of cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 markers to be applied to newborn screening of rare metabolic disorders. © 2011 Lippincott Williams & Wilkins
Enhanced interpretation of newborn screening results without analyte cutoff values
A collaboration among 157 newborn screening programs in 47 countries has lead to the
creation of a database of 705,333 discrete analyte concentrations from 11,462 cases affected with
57 metabolic disorders, and from 631 heterozygotes for 12 conditions. This evidence was first
applied to establish disease ranges for amino acids and acylcarnitines, and clinically validate 114
cutoff target ranges.
Objective: To improve quality and performance with an evidence-based approach, multivariate
pattern recognition software has been developed to aid in the interpretation of complex analyte
profiles. The software generates tools that convert multiple clinically significant results into a
single numerical score based on overlap between normal and disease ranges, penetration within
the disease range, differences between specific conditions, and weighted correction factors.
Design: Eighty-five on-line tools target either a single condition or the differential diagnosis
between two or more conditions. Scores are expressed as a numerical value and as the percentile
rank among all cases with the condition chosen as primary target, and are compared to
interpretation guidelines. Tools are updated automatically after any new data submission (2009-
2011: 5.2 new cases added per day on average).
Main outcome measures: Retrospective evaluation of past cases suggest that these tools could
have avoided at least half of 277 false positive outcomes caused by carrier status for fatty acid
oxidation disorders, and could have prevented 88% of false negative events caused by cutoff
7
values set inappropriately. In Minnesota, their prospective application has been a major
contributing factor to the sustained achievement of a false positive rate below 0.1% and a
positive predictive value above 60%.
Conclusions: Application of this computational approach to raw data could make cutoff values
for single analytes effectively obsolete. This paradigm is not limited to newborn screening and is
applicable to the interpretation of diverse multi-analyte profiles utilized in laboratory medicine.
Abstract wor