81 research outputs found

    Phase II prospective randomized trial of weight loss prior to radical prostatectomy.

    Get PDF
    BACKGROUND:Obesity is associated with poorly differentiated and advanced prostate cancer and increased mortality. In preclinical models, caloric restriction delays prostate cancer progression and prolongs survival. We sought to determine if weight loss (WL) in men with prostate cancer prior to radical prostatectomy affects tumor apoptosis and proliferation, and if WL effects other metabolic biomarkers. METHODS:In this Phase II prospective trial, overweight and obese men scheduled for radical prostatectomy were randomized to a 5-8 week WL program consisting of standard structured energy-restricted meal plans (1200-1500 Kcal/day) and physical activity or to a control group. The primary endpoint was apoptotic index in the radical prostatectomy malignant epithelium. Secondary endpoints were proliferation (Ki67) in the radical prostatectomy tissue, body weight, body mass index (BMI), waist to hip ratio, body composition, and serum PSA, insulin, triglyceride, cholesterol, testosterone, estradiol, leptin, adiponectin, interleukin 6, interleukin 8, insulin-like growth factor 1, and IGF binding protein 1. RESULTS:In total 23 patients were randomized to the WL intervention and 21 patients to the control group. Subjects in the intervention group had significantly more weight loss (WL:-3.7 ± 0.5 kg; Control:-1.6 ± 0.5 kg; p = 0.007) than the control group and total fat mass was significantly reduced (WL:-2.1 ± 0.4; Control: 0.1 ± 0.3; p = 0.015). There was no significant difference in apoptotic or proliferation index between the groups. Among the other biomarkers, triglyceride, and insulin levels were significantly decreased in the WL compared with the control group. CONCLUSIONS:In summary, this short-term WL program prior to radical prostatectomy resulted in significantly more WL in the intervention vs. the control group and was accompanied by significant reductions in body fat mass, circulating triglycerides, and insulin. However, no significant changes were observed in malignant epithelium apoptosis or proliferation. Future studies should consider a longer term or more intensive weight loss intervention

    The effect of three hemostatic agents on early bone healing in an animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resorbable bone hemostasis materials, oxidized regenerated cellulose (ORC) and microfibrillar collagen (MFC), remain at the site of application for up to 8 weeks and may impair osteogenesis. Our experimental study compared the effect of a water-soluble alkylene oxide copolymer (AOC) to ORC and MFC versus no hemostatic material on early bone healing.</p> <p>Methods</p> <p>Two circular 2.7 mm non-critical defects were made in each tibia of 12 rabbits. Sufficient AOC, ORC or MFC was applied to achieve hemostasis, and effectiveness recorded. An autologous blood clot was applied to control defects. Rabbits were sacrificed at 17 days, tibiae excised and fixed. Bone healing was quantitatively measured by micro-computed tomography (micro-CT) expressed as fractional bone volume, and qualitatively assessed by histological examination of decalcified sections.</p> <p>Results</p> <p>Hemostasis was immediate after application of MFC and AOC, after 1-2 minutes with ORC, and >5 minutes for control. At 17 days post-surgery, micro-CT analysis showed near-complete healing in control and AOC groups, partial healing in the ORC group and minimal healing in the MFC group. Fractional bone volume was 8 fold greater in the control and AOC groups than in the MFC group (0.42 ± 0.06, 0.40 ± 0.03 vs 0.05 ± 0.01, <it>P </it>< 0.001) and over 1.5-fold greater than in the ORC group (0.25 ± 0.03, <it>P </it>< 0.05). By histology, MFC remained at the application site with minimal healing at the defect margins and early fibrotic tissue within the defect. ORC-treated defects showed partial healing but with early fibrotic tissue in the marrow space. Conversely, control and AOC-treated defects demonstrated newly formed woven bone rich in cellular activity with no evidence of AOC remaining at the application site.</p> <p>Conclusions</p> <p>Early healing appeared to be impaired by the presence of MFC and impeded by the presence of ORC. In contrast, AOC did not inhibit bone healing and suggest that AOC may be a better bone hemostatic material for procedures where bony fusion is critical and immediate hemostasis required.</p

    Feasibility of pre-operative mTOR inhibitor Sirolimus in children and young adults with desmoid tumor

    Get PDF
    Background: • Desmoid tumor represents an intermediate grade neoplasm with a striking predilection for locally invasive growth and recurrence following resection • More effective, well-tolerated non-surgical treatment options are needed • Current approaches • If feasible, watchful waiting is the preferred approach • 20-30% spontaneous regression • In situations where treatment is indicated, the following approaches are utilized • Surgery is the primary approach if minimal morbidity is anticipated • Medical therapies • Cytotoxic drugs • Tyrosine kinase inhibitors • Hydroxyurea • Gamma secretase inhibitors • mTOR Inhibitor Rationale • Desmoid tumor is well-known to be associated with deregulation of the APC/β-catenin pathway • Deregulation of the mTOR cell proliferation/survival pathway may play an important role in tumor biology when the APC/βcatenin pathway is disrupted • The mTOR inhibitor sirolimus is attractive as a potential targeted therapy for desmoid tumor • Well-tolerated in children and young adults • Can be given orally in tablet or liquid formulatio

    Novel Oxysterols Have Pro-Osteogenic and Anti-Adipogenic Effects In Vitro and Induce Spinal Fusion In Vivo

    Get PDF
    ABSTRACT Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARg activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARg, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation

    Tyrosine Kinase ETK/BMX Is Up-Regulated in Bladder Cancer and Predicts Poor Prognosis in Patients with Cystectomy

    Get PDF
    Deregulation of the non-receptor tyrosine kinase ETK/BMX has been reported in several solid tumors. In this report, we demonstrated that ETK expression is progressively increased during bladder cancer progression. We found that down-regulation of ETK in bladder cancer cells attenuated STAT3 and AKT activity whereas exogenous overexpression of ETK had opposite effects, suggesting that deregulation of ETK may attribute to the elevated activity of STAT3 and AKT frequently detected in bladder cancer. The survival, migration and invasion of bladder cancer cells were significantly compromised when ETK expression was knocked down by a specific shRNA. In addition, we showed that ETK localizes to mitochondria in bladder cancer cells through interacting with Bcl-XL and regulating ROS production and drug sensitivity. Therefore, ETK may play an important role in regulating survival, migration and invasion by modulating multiple signaling pathways in bladder cancer cells. Immunohistochemistry analysis on tissue microarrays containing 619 human bladder tissue samples shows that ETK is significantly upregulated during bladder cancer development and progression and ETK expression level predicts the survival rate of patients with cystectomy. Taken together, our results suggest that ETK may potentially serve as a new drug target for bladder cancer treatment as well as a biomarker which could be used to identify patients with higher mortality risk, who may be benefited from therapeutics targeting ETK activity

    Article Novel Oxysterols Have Pro-Osteogenic and Anti-Adipogenic Effects In Vitro and Induce Spinal Fusion In Vivo

    Get PDF
    Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopaedic indications requiring local bone formation

    Different duration of parathyroid hormone exposure distinctively regulates primary response genes Nurr1 and RANKL in osteoblasts.

    Full text link
    Parathyroid hormone (PTH) exerts dual effects, anabolic or catabolic, on bone when administrated intermittently or continuously, via mechanisms that remain largely unknown. PTH binding to cells induces PTH-responsive genes including primary response genes (PRGs). PRGs are rapidly induced without the need for de novo protein synthesis, thereby playing pivotal roles in directing subsequent molecular responses. In this study, to understand the role of PRGs in mediating osteoblastic cellular responses to PTH, we investigated whether various durations of PTH differentially induce PRGs in primary osteoblasts and MC3T3-E1. Nurr1 and RANKL, PRGs known for their anabolic and catabolic roles in bone metabolism respectively, presented distinctive transient vs. sustained induction kinetics. Corroborating their roles, maximum induction of Nurr1 was sufficiently achieved by brief PTH in as little as 30 minutes and continued beyond that, while maximum induction of RANKL was achieved only by prolonged PTH over 4 hours. Our data suggested distinctive regulatory mechanisms for Nurr1 and RANKL: PKA-mediated chromatin rearrangement for transcriptional regulation of both PRGs and ERK-mediated transcriptional regulation for RANKL but not Nurr1. Lastly, we classified PRGs into two groups based on the induction kinetics: The group that required brief PTH for maximum induction included Nur77, cox-2, and Nurr1, all of which are reported to play roles in bone formation. The other group that required prolonged PTH for maximum induction included IL-6 and RANKL, which play roles in bone resorption. Together, our data suggested the crucial role of PRG groups in mediating differential osteoblastic cellular responses to intermittent vs. continuous PTH. Continued research into the regulatory mechanisms of PKA and ERK for PRGs will help us better understand the molecular mechanisms underlying the dual effects of PTH, thereby optimizing the current therapeutic use of PTH for osteoporosis
    corecore