2,422 research outputs found

    Constraining the Dark Matter decay lifetime with very deep observations of the Perseus cluster with the MAGIC telescopes

    Get PDF
    We present preliminary results on Dark Matter searches from observations of the Perseus galaxy cluster with the MAGIC Telescopes. MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. Galaxy clusters are the largest known gravitationally bound structures in the Universe, with masses of ~10^15 Solar masses. There is strong evidence that galaxy clusters are Dark Matter dominated objects, and therefore promising targets for Dark Matter searches, particularly for decay signals. MAGIC has taken almost 300 hours of data on the Perseus Cluster between 2009 and 2015, the deepest observational campaign on any galaxy cluster performed so far in the very high energy range of the electromagnetic spectrum. We analyze here a small sample of this data and search for signs of dark matter in the mass range between 100 GeV and 20 TeV. We apply a likelihood analysis optimized for the spectral and morphological features expected in the dark matter decay signals. This is the first time that a dedicated Dark Matter optimization is applied in a MAGIC analysis, taking into account the inferred Dark Matter distribution of the source. The results with the full dataset analysis will be published soon by the MAGIC Collaboration

    Scaling laws of solar and stellar flares

    Full text link
    In this study we compile for the first time comprehensive data sets of solar and stellar flare parameters, including flare peak temperatures T_p, flare peak volume emission measures EM_p, and flare durations t_f from both solar and stellar data, as well as flare length scales L from solar data. Key results are that both the solar and stellar data are consistent with a common scaling law of EM_p ~ T_p^4.7, but the stellar flares exhibit ~250 times higher emission measures (at the same flare peak temperature). For solar flares we observe also systematic trends for the flare length scale L(T_p) ~ T_p^0.9 and the flare duration t_F(T_p) ~ T_p^0.9 as a function of the flare peak temperature. Using the theoretical RTV scaling law and the fractal volume scaling observed for solar flares, i.e., V(L) ~ L^2.4, we predict a scaling law of EM_p ~ T_p^4.3, which is consistent with observations, and a scaling law for electron densities in flare loops, n_p ~ T_p^2/L ~ T_p^1.1. The RTV-predicted electron densities were also found to be consistent with densities inferred from total emission measures, n_p=(EM_p/q_V*V)^1/2, using volume filling factors of q_V=0.03-0.08 constrained by fractal dimensions measured in solar flares. Our results affect also the determination of radiative and conductive cooling times, thermal energies, and frequency distributions of solar and stellar flare energies.Comment: 9 Figs., (paper in press, The Astrophsycial Journal

    Schoolyard Microclimate

    Get PDF
    The natural world exhibits substantial variation in climate, which influences the distribution, reproductive success, and survival of plants and animals. Although students are aware of weather, their understanding of climate is typically less clear, especially the concept of microclimate-the climate of a specific place within an area as contrasted with the climate of the entire area. Microclimate can influence where birds place their nests (Lloyd and Martin 2004), where insects reside (Lorenzo and Lazzari 1999), and where plants successfully germinate (Tomimatsu and Ohara 2004). Therefore, microclimate can have a profound effect on local community structure and biodiversity, particularly on plants, which are unable to move and thus often limited by local environmental conditions

    A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity

    Get PDF
    HD179949 is an F8V star, orbited by a close-in giant planet with a period of ~3 days. Previous studies suggested that the planet enhances the magnetic activity of the parent star, producing a chromospheric hot spot which rotates in phase with the planet orbit. However, this phenomenon is intermittent since it was observed in several but not all seasons. A long-term monitoring of the magnetic activity of HD179949 is required to study the amplitude and time scales of star-planet interactions. In 2009 we performed a simultaneous optical and X-ray spectroscopic campaign to monitor the magnetic activity of HD179949 during ~5 orbital periods and ~2 stellar rotations. We analyzed the CaII H&K lines as a proxy for chromospheric activity, and we studied the X-ray emission in search of flux modulations and to determine basic properties of the coronal plasma. A detailed analysis of the flux in the cores of the CaII H&K lines and a similar study of the X-ray photometry shows evidence of source variability, including one flare. The analysis of the the time series of chromospheric data indicates a modulation with a ~11 days period, compatible with the stellar rotation period at high latitudes. Instead, the X-ray light curve suggests a signal with a period of ~4 days, consistent with the presence of two active regions on opposite hemispheres. The observed variability can be explained, most likely, as due to rotational modulation and to intrinsic evolution of chromospheric and coronal activity. There is no clear signature related to the orbital motion of the planet, but the possibility that just a fraction of the chromospheric and coronal variability is modulated with the orbital period of the planet, or the stellar-planet beat period, cannot be excluded. We conclude that any effect due to the presence of the planet is difficult to disentangle

    Aerosol-assisted CVD synthesis, characterisation and gas-sensing application of gold-functionalised tungsten oxide

    Get PDF
    Tungsten oxide nanoneedles (NNs) functionalised with gold nanoparticles (NPs) have been integrated with alumina gas-sensor platforms using a simple and effective co-deposition method via aerosol-assisted chemical vapour deposition (AACVD) utilising a novel gold precursor, (NH4)AuCl4. The gas-sensing results show that gold NP functionalisation of tungsten oxide NNs improves the sensitivity of response to ethanol, with sensitivity increasing and response time decreasing with increasing amount of gold

    Scanning Tunneling Spectroscopy in MgB2

    Full text link
    We present scanning tunneling microscopy measurements of the surface of superconducting MgB2 with a critical temperature of 39K. In zero magnetic field the conductance spectra can be analyzed in terms of the standard BCS theory with a smearing parameter Gamma. The value of the superconducting gap is 5.2 meV at 4.2 K, with no experimentally significant variation across the surface of the sample. The temperature dependence of the gap follows the BCS form, fully consistent with phonon-mediated superconductivity in this novel superconductor. The application of a magnetic field induces strong pair-breaking as seen in the conductance spectra in fields up to 6 T.Comment: 4 pages, 4 figure

    Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate

    Full text link
    We present a study of Nernst effect in underdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4 in magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was found to persist in presence of a field-induced non-metallic resistivity. By simultaneously measuring resistivity and the Nernst coefficient, we extract the entropy of vortex cores in the vicinity of this field-induced superconductor-insulator transition. Moreover, the temperature dependence of the thermo-electric Hall angle provides strong constraints on the possible origins of the finite Nernst signal above TcT_c, as recently discovered by Xu et al.Comment: 5 Pages inculding 4 figure

    Theory of vortex excitation imaging via an NMR relaxation measurement

    Full text link
    The temperature dependence of the site-dependent nuclear spin relaxation time T_1 around vortices is studied in s-wave and d-wave superconductors.Reflecting low energy electronic excitations associated with the vortex core, temperature dependences deviate from those of the zero-field case, and T_1 becomes faster with approaching the vortex core. In the core region, T_1^{-1} has a new peak below T_c. The NMR study by the resonance field dependence may be a new method to prove the spatial resolved vortex core structure in various superconductors.Comment: 5 pages, 3 figure

    Casing contribution to proteolytic changes and biogenic amines content in the production of an artisanal naturally fermented dry sausage

    Get PDF
    The effect of two kinds of casings on the production and characteristics of a dry fermented sausage was investigated. In detail, an Italian product, naturally fermented at low temperatures and normally wrapped in beef casing instead of the most diffused hog one, was selected. Two different productions (one traditionally in beef casing (MCB) and another in hog casing (MCH)) were investigated over time to determine the differences particularly regarding proteolytic changes during fermentation and ripening. First of all, the product in hog casing required a longer ripening time, up to 120 days, instead of 45–50 days, because of the lower drying rate, while the microbial dynamics were not significantly modified. Conversely, the proteolysis showed a different evolution, being more pronounced, together with the biogenic amines content up to 341 mg/Kg instead of 265 mg/Kg for the traditional products. The latter products were instead characterized by higher quantities of total free amino acids, 3-methyl butanoic acid, 3-Methyl-1-butanal, and 2-Methylpropanal, enriching the final taste and aroma. The traditional product MCB also showed lower hardness and chewiness than MCH. The results highlight how the choice of casing has a relevant impact on the development of the final characteristics of fermented sausages
    corecore