9,207 research outputs found
Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring
Sleep studies are important for diagnosing sleep disorders such as insomnia,
narcolepsy or sleep apnea. They rely on manual scoring of sleep stages from raw
polisomnography signals, which is a tedious visual task requiring the workload
of highly trained professionals. Consequently, research efforts to purse for an
automatic stage scoring based on machine learning techniques have been carried
out over the last years. In this work, we resort to multitaper spectral
analysis to create visually interpretable images of sleep patterns from EEG
signals as inputs to a deep convolutional network trained to solve visual
recognition tasks. As a working example of transfer learning, a system able to
accurately classify sleep stages in new unseen patients is presented.
Evaluations in a widely-used publicly available dataset favourably compare to
state-of-the-art results, while providing a framework for visual interpretation
of outcomes.Comment: 8 pages, 1 figure, 2 tables, IEEE 2017 International Workshop on
Machine Learning for Signal Processin
Electronic structure of the ferromagnetic superconductor UCoGe from first principles
The superconductor UCoGe is analyzed with electronic structure calculations
using Linearized Augmented Plane Wave method based on Density Functional
Theory. Ferromagnetic and antiferromagnetic calculations with and without
correlations (via LDA+U) were done. In this compound the Fermi level is
situated in a region where the main contribution to DOS comes from the U-5f
orbital. The magnetic moment is mainly due to the Co-3d orbital with a small
contribution from the U-5f orbital. The possibility of fully non-collinear
magnetism in this compound seems to be ruled out. These results are compared
with the isostructural compound URhGe, in this case the magnetism comes mostly
from the U-5f orbital
Charge order in Magnetite. An LDA+ study
The electronic structure of the monoclinic structure of FeO is
studied using both the local density approximation (LDA) and the LDA+. The
LDA gives only a small charge disproportionation, thus excluding that the
structural distortion should be sufficient to give a charge order. The LDA+
results in a charge disproportion along the c-axis in good agreement with the
experiment. We also show how the effective can be calculated within the
augmented plane wave methods
- …