14 research outputs found
2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays
We demonstrate single-atom resolved imaging with a survival probability of
and a fidelity of , enabling us to perform repeated
high-fidelity imaging of single atoms in tweezers for thousands of times. We
further observe lifetimes under laser cooling of more than seven minutes, an
order of magnitude longer than in previous tweezer studies. Experiments are
performed with strontium atoms in tweezer arrays, which is at
a magic wavelength for the clock transition. Tuning to this wavelength is
enabled by off-magic Sisyphus cooling on the intercombination line, which lets
us choose the tweezer wavelength almost arbitrarily. We find that a single not
retro-reflected cooling beam in the radial direction is sufficient for
mitigating recoil heating during imaging. Moreover, this cooling technique
yields temperatures below K, as measured by release and recapture.
Finally, we demonstrate clock-state resolved detection with average survival
probability of and average state detection fidelity of .
Our work paves the way for atom-by-atom assembly of large defect-free arrays of
alkaline-earth atoms, in which repeated interrogation of the clock transition
is an imminent possibility.Comment: 6 pages, 5 figures, 1 vide
Alkaline earth atoms in optical tweezers
We demonstrate single-shot imaging and narrow-line cooling of individual
alkaline earth atoms in optical tweezers; specifically, strontium-88 atoms
trapped in light. We achieve high-fidelity
single-atom-resolved imaging by detecting photons from the broad singlet
transition while cooling on the narrow intercombination line, and extend this
technique to highly uniform two-dimensional arrays of tweezers. Cooling
during imaging is based on a previously unobserved narrow-line Sisyphus
mechanism, which we predict to be applicable in a wide variety of experimental
situations. Further, we demonstrate optically resolved sideband cooling of a
single atom close to the motional ground state of a tweezer. Precise
determination of losses during imaging indicate that the branching ratio from
P to D is more than a factor of two larger than commonly
quoted, a discrepancy also predicted by our ab initio calculations. We also
measure the differential polarizability of the intercombination line in a
tweezer and achieve a magic-trapping configuration by tuning
the tweezer polarization from linear to elliptical. We present calculations, in
agreement with our results, which predict a magic crossing for linear
polarization at and a crossing independent of polarization
at 500.65(50)nm. Our results pave the way for a wide range of novel
experimental avenues based on individually controlled alkaline earth atoms in
tweezers -- from fundamental experiments in atomic physics to quantum
computing, simulation, and metrology implementations
Dark-state enhanced loading of an optical tweezer array
Neutral atoms and molecules trapped in optical tweezers have become a
prevalent resource for quantum simulation, computation, and metrology. However,
the maximum achievable system sizes of such arrays are often limited by the
stochastic nature of loading into optical tweezers, with a typical loading
probability of only 50%. Here we present a species-agnostic method for
dark-state enhanced loading (DSEL) based on real-time feedback, long-lived
shelving states, and iterated array reloading. We demonstrate this technique
with a 95-tweezer array of Sr atoms, achieving a maximum loading
probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension.
Our protocol is complementary to, and compatible with, existing schemes for
enhanced loading based on direct control over light-assisted collisions, and we
predict it can enable close-to-unity filling for arrays of atoms or molecules
2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays
We demonstrate single-atom resolved imaging with a survival probability of 0.99932(8) and a fidelity of 0.99991(1), enabling us to perform repeated high-fidelity imaging of single atoms in tweezers for thousands of times. We further observe lifetimes under laser cooling of more than seven minutes, an order of magnitude longer than in previous tweezer studies. Experiments are performed with strontium atoms in 813.4 nm tweezer arrays, which is at a magic wavelength for the clock transition. Tuning to this wavelength is enabled by off-magic Sisyphus cooling on the intercombination line, which lets us choose the tweezer wavelength almost arbitrarily. We find that a single not retro-reflected cooling beam in the radial direction is sufficient for mitigating recoil heating during imaging. Moreover, this cooling technique yields temperatures below 5 μK, as measured by release and recapture. Finally, we demonstrate clock-state resolved detection with average survival probability of 0.996(1) and average state detection fidelity of 0.981(1). Our work paves the way for atom-by-atom assembly of large defect-free arrays of alkaline-earth atoms, in which repeated interrogation of the clock transition is an imminent possibility
High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures
Alkaline earth atoms in optical tweezers
We demonstrate single-shot imaging and narrow-line cooling of individual alkaline-earth atoms in optical tweezers; specifically, strontium trapped in 515.2−nm light. Our approach enables high-fidelity detection of single atoms by imaging photons from the broad singlet transition while cooling on the narrow intercombination line, and we extend this technique to highly uniform two-dimensional tweezer arrays with 121 sites. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom to near the motional ground state of a tweezer, which is tuned to a magic-trapping configuration achieved by elliptical polarization. Finally, we present calculations, in agreement with our experimental results, that predict a linear-polarization and polarization-independent magic crossing at 520(2) nm and 500.65(50) nm, respectively. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline-earth atoms in tweezers—from fundamental experiments in atomic physics to quantum computing, simulation, and metrology
High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures