3,320 research outputs found

    Protostellar Jet and Outflow in the Collapsing Cloud Core

    Full text link
    We investigate the driving mechanism of outflows and jets in star formation process using resistive MHD nested grid simulations. We found two distinct flows in the collapsing cloud core: Low-velocity outflows (sim 5 km/s) with a wide opening angle, driven from the first adiabatic core, and high-velocity jets (sim 50 km/s) with good collimation, driven from the protostar. High-velocity jets are enclosed by low-velocity outflow. The difference in the degree of collimation between the two flows is caused by the strength of the magnetic field and configuration of the magnetic field lines. The magnetic field around an adiabatic core is strong and has an hourglass configuration. Therefore, the low-velocity outflow from the adiabatic core are driven mainly by the magnetocentrifugal mechanism and guided by the hourglass-like field lines. In contrast, the magnetic field around the protostar is weak and has a straight configuration owing to Ohmic dissipation in the high-density gas region. Therefore, high-velocity jet from the protostar are driven mainly by the magnetic pressure gradient force and guided by straight field lines. Differing depth of the gravitational potential between the adiabatic core and the protostar cause the difference of the flow speed. Low-velocity outflows correspond to the observed molecular outflows, while high-velocity jets correspond to the observed optical jets. We suggest that the protostellar outflow and the jet are driven by different cores (the first adiabatic core and protostar), rather than that the outflow being entrained by the jet.Comment: To appear in the proceedings of the "Protostellar Jets in Context" conference held on the island of Rhodes, Greece (7-12 July 2008

    Direct Imaging of Spatially Modulated Superfluid Phases in Atomic Fermion Systems

    Full text link
    It is proposed that the spatially modulated superfluid phase, or the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state could be observed in resonant Fermion atomic condensates which are realized recently. We examine optimal experimental setups to achieve it by solving Bogoliubov-de Gennes equation both for idealized one-dimensional and realistic three-dimensional cases. The spontaneous modulation of this superfluid is shown to be directly imaged as the density profiles either by optical absorption or by Stern-Gerlach experiments.Comment: 4 pages, 3 figure

    Theory for Photon-Assisted Macroscopic Quantum Tunneling in a Stack of Intrinsic Josephson Junctions

    Full text link
    We propose a theory for photon-assisted macroscopic quantum tunneling (MQT) in a stack of capacitively-coupled intrinsic Josephson junctions in which the longitudinal Josephson plasma, i.e., longitudinal collective phase oscillation modes, is excited. The scheme of energy-level quantization in the collective oscillatory states is clarified in the NN-junction system. When the MQT occurs from the single-plasmon states excited by microwave irradiation in the multi-photon process to the uniform voltage state, our theory predicts that the escape rate is proportional to N2N^2. This result is consistent with the recent observation in Bi-2212 intrinsic Josephson junctions.Comment: 5 pages, 2 figure

    Knight shift detection using gate-induced decoupling of the hyperfine interaction in quantum Hall edge channels

    Full text link
    A method for the observation of the Knight shift in nanometer-scale region in semiconductors is developed using resistively detected nuclear magnetic resonance (RDNMR) technique in quantum Hall edge channels. Using a gate-induced decoupling of the hyperfine interaction between electron and nuclear spins, we obtain the RDNMR spectra with or without the electron-nuclear spin coupling. By a comparison of these two spectra, the values of the Knight shift can be given for the nuclear spins polarized dynamically in the region between the relevant edge channels in a single two-dimensional electron system, indicating that this method has a very high sensitivity compared to a conventional NMR technique.Comment: 4 pages, 4 figures, to appear in Applied Physics Letter

    Vortex state in double transition superconductors

    Full text link
    Novel vortex phase and nature of double transition field are investigated by two-component Ginzburg-Landau theory in a situation where fourfold-twofold symmetric superconducting double transition occurs. The deformation from 60 degree triangular vortex lattice and a possibility of the vortex sheet structure are discussed. In the presence of the gradient coupling, the transition changes to a crossover at finite fields. These characters are important to identify the multiple superconducting phase in PrOs_4_Sb_12.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Voltage-biased I-V characteristics in the multi-Josephson junction model of high Tc_c superconductor

    Get PDF
    By use of the multi-Josephson junction model, we investigate voltage-biased I-V characteristics. Differently from the case of the single junction, I-V characteristics show a complicated behavior due to inter-layer couplings among superconducting phase differences mediated by the charging effect. We show that there exist three characteristic regions, which are identified by jumps and cusps in the I-V curve. In the low voltage region, the total current is periodic with trigonometric functional increases and rapid drops. Then a kind of chaotic region is followed. Above certain voltage, the total current behaves with a simple harmonic oscillation and the I-V characteristics form a multi-branch structure as in the current-biased case. The above behavior is the result of the inter-layer coupling, and may be used to confirm the inter-layer coupling mechanism of the formation of hysteresis branches.Comment: 12 pages, Latex, 4 figure
    corecore