2,368 research outputs found

    ASTRI for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the largest ground-based observatory operating in the very-high-energy gamma-ray (20 GeV - 300 TeV) range. It will be based on more than one hundred telescopes, located at two sites (northern and southern hemispheres). The energy coverage, in the southern CTA array, will extend up to hundreds of TeV thanks to 70 small size telescopes (SST), with primary mirrors of about 4 meters in diameter and large field of view of the order of 9 degrees. It is proposed that one of the first sets of precursors for the CTA SSTs array will be represented by nine ASTRI telescopes. Their prototype, named ASTRI SST-2M, is installed in Italy. It is currently completing the overall commissioning before entering the science verification phase that will performed observing bright TeV sources as Crab Nebula, Mrk421 and Mrk 501 cross-checking the prototype performance with the Monte Carlo predictions. ASTRI telescopes are characterized by a dual-mirror optical design based on the Schwarzschild- Couder (SC) configuration. The focal-plane camera is curved in order to fit the ideal prescription for the SC design and the sensors are small size silicon photomultipliers read-out by a fast front-end electronics. The telescope prototype installed in Italy, has been developed by the Italian National Institute for Astrophysics, INAF, following an end-to-end approach that comprises all aspects from the design, construction and implementation of the entire hardware and software system to the final scientific products. All parts of the system have been designed to comply with the CTA requirements. A collaborative effort, addressed to the implementation of the first ASTRI telescopes for the CTA southern site, is now on-going led by INAF with the Universidade de Sao Paulo (Brazil), the North-West University (South Africa) and the Italian National Institute for Nuclear Physics.Comment: All CTA contributions at arXiv:1709.0348

    Using radio emission to detect isolated and quiescent accreting black holes

    Full text link
    We discuss the implications of new relations between black holes' masses, X-ray luminosities and radio luminosities, as well as the properties of the next generation of radio telescopes, for the goal of finding isolated accreting black holes. Because accreting black holes have radio-to-X-ray flux ratios that increase with decreasing luminosity in Eddington units, and because deep surveys over large fields of view should be possible with planned instrumentation such as LOFAR, radio surveys should be significantly more efficient than X-ray surveys for finding these objects.Comment: 5 pages, 1 table, accepted to MNRAS Letter

    An observational method for fast stochastic X-ray polarimetry-timing

    Full text link
    The upcoming launch of the first space based X-ray polarimeter in ∼40\sim 40 years will provide powerful new diagnostic information to study accreting compact objects. In particular, analysis of rapid variability of the polarisation degree and angle will provide the opportunity to probe the relativistic motions of material in the strong gravitational fields close to the compact objects, and enable new methods to measure black hole and neutron star parameters. However, polarisation properties are measured in a statistical sense, and a statistically significant polarisation detection requires a fairly long exposure, even for the brightest objects. Therefore, the sub-minute timescales of interest are not accessible using a direct time-resolved analysis of polarisation degree and angle. Phase-folding can be used for coherent pulsations, but not for stochastic variability such as quasi-periodic oscillations. Here, we introduce a Fourier method that enables statistically robust detection of stochastic polarisation variability for arbitrarily short variability timescales. Our method is analogous to commonly used spectral-timing techniques. We find that it should be possible in the near future to detect the quasi-periodic swings in polarisation angle predicted by Lense-Thirring precession of the inner accretion flow. This is contingent on the mean polarisation degree of the source being greater than ∼4−5%\sim 4-5\%, which is consistent with the best current constraints on Cygnus X-1 from the late 1970s.Comment: Accepted for publication in MNRA

    The closest black holes

    Full text link
    Starting from the assumption that there is a large population (> 10^8) of isolated, stellar-mass black holes (IBH) distributed throughout our galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter \lambda. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for black holes accreting at low rates. The latter assumption depends crucially on whether or not the IBH accrete from the ISM in a manner which is axisymmetric enough to produce jets. Comparing the predicted X-ray fluxes with limits from hard X-ray surveys, we conclude that either the Bondi-Hoyle efficiency parameter \lambda, is rather small (< 0.01), the velocities of the IBH are rather high, or some combination of both. The predicted radio flux densities correspond to a population of objects which, while below current survey limits, should be detectable with the Square Kilometre Array (SKA). Converting the simulated space velocities into proper motions, we further demonstrate that such IBH could be identified as faint high proper motion radio sources in SKA surveys.Comment: Accepted for publication in MNRA
    • …
    corecore