1,788 research outputs found

    초점 스택에서 3D 깊이 재구성 및 깊이 개선

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2021. 2. 신영길.Three-dimensional (3D) depth recovery from two-dimensional images is a fundamental and challenging objective in computer vision, and is one of the most important prerequisites for many applications such as 3D measurement, robot location and navigation, self-driving, and so on. Depth-from-focus (DFF) is one of the important methods to reconstruct a 3D depth in the use of focus information. Reconstructing a 3D depth from texture-less regions is a typical issue associated with the conventional DFF. Further more, it is difficult for the conventional DFF reconstruction techniques to preserve depth edges and fine details while maintaining spatial consistency. In this dissertation, we address these problems and propose an DFF depth recovery framework which is robust over texture-less regions, and can reconstruct a depth image with clear edges and fine details. The depth recovery framework proposed in this dissertation is composed of two processes: depth reconstruction and depth refinement. To recovery an accurate 3D depth, We first formulate the depth reconstruction as a maximum a posterior (MAP) estimation problem with the inclusion of matting Laplacian prior. The nonlocal principle is adopted during the construction stage of the matting Laplacian matrix to preserve depth edges and fine details. Additionally, a depth variance based confidence measure with the combination of the reliability measure of focus measure is proposed to maintain the spatial smoothness, such that the smooth depth regions in initial depth could have high confidence value and the reconstructed depth could be more derived from the initial depth. As the nonlocal principle breaks the spatial consistency, the reconstructed depth image is spatially inconsistent. Meanwhile, it suffers from texture-copy artifacts. To smooth the noise and suppress the texture-copy artifacts introduced in the reconstructed depth image, we propose a closed-form edge-preserving depth refinement algorithm that formulates the depth refinement as a MAP estimation problem using Markov random fields (MRFs). With the incorporation of pre-estimated depth edges and mutual structure information into our energy function and the specially designed smoothness weight, the proposed refinement method can effectively suppress noise and texture-copy artifacts while preserving depth edges. Additionally, with the construction of undirected weighted graph representing the energy function, a closed-form solution is obtained by using the Laplacian matrix corresponding to the graph. The proposed framework presents a novel method of 3D depth recovery from a focal stack. The proposed algorithm shows the superiority in depth recovery over texture-less regions owing to the effective variance based confidence level computation and the matting Laplacian prior. Additionally, this proposed reconstruction method can obtain a depth image with clear edges and fine details due to the adoption of nonlocal principle in the construct]ion of matting Laplacian matrix. The proposed closed-form depth refinement approach shows that the ability in noise removal while preserving object structure with the usage of common edges. Additionally, it is able to effectively suppress texture-copy artifacts by utilizing mutual structure information. The proposed depth refinement provides a general idea for edge-preserving image smoothing, especially for depth related refinement such as stereo vision. Both quantitative and qualitative experimental results show the supremacy of the proposed method in terms of robustness in texture-less regions, accuracy, and ability to preserve object structure while maintaining spatial smoothness.Chapter 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Related Works 9 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Principle of depth-from-focus . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Focus measure operators . . . . . . . . . . . . . . . . . . . 12 2.3 Depth-from-focus reconstruction . . . . . . . . . . . . . . . . . . 14 2.4 Edge-preserving image denoising . . . . . . . . . . . . . . . . . . 23 Chapter 3 Depth-from-Focus Reconstruction using Nonlocal Matting Laplacian Prior 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Image matting and matting Laplacian . . . . . . . . . . . . . . . 40 3.3 Depth-from-focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Depth reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Likelihood model . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Nonlocal matting Laplacian prior model . . . . . . . . . . 50 3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Data configuration . . . . . . . . . . . . . . . . . . . . . . 55 3.5.3 Reconstruction results . . . . . . . . . . . . . . . . . . . . 56 3.5.4 Comparison between reconstruction using local and nonlocal matting Laplacian . . . . . . . . . . . . . . . . . . . 56 3.5.5 Spatial consistency analysis . . . . . . . . . . . . . . . . . 59 3.5.6 Parameter setting and analysis . . . . . . . . . . . . . . . 59 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 4 Closed-form MRF-based Depth Refinement 63 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Closed-form solution . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Edge preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Texture-copy artifacts suppression . . . . . . . . . . . . . . . . . 73 4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5 Evaluation 82 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Evaluation on synthetic datasets . . . . . . . . . . . . . . . . . . 84 5.4 Evaluation on real scene datasets . . . . . . . . . . . . . . . . . . 89 5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Computational performances . . . . . . . . . . . . . . . . . . . . 93 Chapter 6 Conclusion 96 Bibliography 99Docto

    Urban–rural disparity in blood pressure among Chinese children: 1985–2010

    Get PDF
    Background: Understanding the urban-rural gap in childhood blood pressure (BP) is crucial to alleviate the urban-rural disparity in burden of hypertension in the future. This study investigated trends in urban-rural BP disparity and the influence of body mass index among Chinese children between 1985 and 2010. Methods: Data included 1 010 153 children aged 8-17 years enrolled in the Chinese National Survey on Students' Constitution and Health, a successive national cross-sectional survey. High BP was defined according to age-sex- and height-specific 95th percentile. Multi-variable linear and logistic regression models were used to assess the urban-rural BP differentials. Results: Although urban children had greater prevalence of overweight and obesity than rural counterparts, rural children revealed higher levels of BP across the consecutive 25-year periods. The urban-rural disparity in prevalence of high systolic BP decreased from 2.3 (95% confidence interval: 2.3, 2.6) % to 0.2 (-0.1, 0.4) % in boys and 3.7 (3.5, 4.0) % to 0.6 (0.3, 0.8) % in girls between 1985 and 2010 after adjusting for confounding factors. Further adjustment of body mass index did not change the urban-rural disparity and its trend. The similar results were also observed for diastolic BP. Conclusions: Despite the urban-rural disparity in BP decreased between 1985 and 2010, rural children constantly showed higher BP levels than their urban counterparts. Since these differentials in BP cannot be explained by obesity, study of other potential factors could provide further opportunity to bridge this gap

    Vibration measurement of long-span floors in high-speed railway station

    Get PDF
    High-speed rail stations have long-span floor structures stretching over rail tracks and platforms. These long-span floor structures are prone to vibration caused by large crowds. Current floor vibration design guidelines lack specific provisions addressing this type of structures. There is a need to study the crowd excitation and the vibration performance of the long-span floor structures. A field testing study was recently conducted in China’s newly constructed Xi’an North Railway Station, and results of the study is discussed in this paper. The output-only method was used for modal testing, where vertical accelerations were recorded at a grid of fifty locations on the floor panels and analyzed to obtain the natural frequencies, mode shapes, and damping ratios of structural vibration modes. Vibration measurements were taken and analyzed at a variety of load cases, which included operating cases at the floor sections in use to assess vibration performance of the floor structure, and several experimental cases at the floor sections not yet in use to investigate the effects of crowd size and walking and jumping frequency on floor vibration. It was found that under most operating conditions, the floor structural vibration didn’t exceed the commonly accepted design limits. Thus, the vibration control design of the floor structure is deemed satisfactory. Under certain coordinated crowd movements (e.g., walking and jumping at certain frequencies), resonance occurred, and vibration levels exceeded the threshold for acceptance. The crowd excitation frequency has a greater influence than the crowd size on floor vibration responses

    Effect of Na Doping on the Nanostructures and Electrical Properties of ZnO Nanorod Arrays

    Get PDF
    The p-type ZnO nanorod arrays were prepared by doping Na with hydrothermal method. The structural, electrical, and optical properties were explored by XRD, Hall-effect, PL, and Raman spectra. The carrier concentrations and the mobility of Na-doped ZnO nanorod arrays are arranged from 1.4×1016 cm−3 to 1.7×1017 cm−3 and 0.45 cm2 v−1 s−1 to 106 cm2 v−1 s−1, respectively

    A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle Force and Joint Kinematics

    Full text link
    Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis of the dynamic interplay among neural muscle stimulation, muscle dynamics, and kinetics. Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner. However, the small sample nature and physical interpretability of biomechanical analysis limit the applications of DNNs. This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics. This method seamlessly integrates Lagrange's equation of motion and inverse dynamic muscle model into the generative adversarial network (GAN) framework for structured feature decoding and extrapolated estimation from the small sample data. Specifically, Lagrange's equation of motion is introduced into the generative model to restrain the structured decoding of the high-level features following the laws of physics. And a physics-informed policy gradient is designed to improve the adversarial learning efficiency by rewarding the consistent physical representation of the extrapolated estimations and the physical references. Experimental validations are conducted on two scenarios (i.e. the walking trials and wrist motion trials). Results indicate that the estimations of the muscle forces and joint kinematics are unbiased compared to the physics-based inverse dynamics, which outperforms the selected benchmark methods, including physics-informed convolution neural network (PI-CNN), vallina generative adversarial network (GAN), and multi-layer extreme learning machine (ML-ELM).Comment: 17 pages, 8 Figure
    corecore