438 research outputs found
China's multilateralism and the South China sea conflict: Quest for hegemonic stability
Master'sMASTER OF SOCIAL SCIENCE
Government-Industry Relations After Decentralization: From the Five-Year Plan to the World Trade Organization
Ph.DDOCTOR OF PHILOSOPH
原因・理由を表す複合的な接続表現の史的研究
学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 井島 正博, 東京大学教授 月本 雅幸, 東京大学准教授 肥爪 周二, 千葉大学教授 岡部 嘉幸, 学習院大学教授 前田 直子University of Tokyo(東京大学
Cold gas and a Milky Way-type 2175 {\AA} bump in a metal-rich and highly depleted absorption system
We report the detection of a strong Milky Way-type 2175 \AA extinction
bump at = 2.1166 in the quasar spectrum towards SDSS J121143.42+083349.7
from the Sloan Digital Sky Survey (SDSS) Data Release 10. We conduct follow up
observations with the Echelle Spectrograph and Imager (ESI) onboard the Keck-II
telescope and the Ultraviolet and Visual Echelle Spectrograph (UVES) on the
VLT. This 2175 \AA absorber is remarkable in that we simultaneously detect
neutral carbon (C I), neutral chlorine (Cl I), and carbon monoxide (CO). It
also qualifies as a damped Lyman alpha system. The J1211+0833 absorber is found
to be metal-rich and has a dust depletion pattern resembling that of the Milky
Way disk clouds. We use the column densities of the C I fine structure states
and the C II/C I ratio (under the assumption of ionization equilibrium) to
derive the temperature and volume density in the absorbing gas. A Cloudy
photoionization model is constructed, which utilizes additional atoms/ions to
constrain the physical conditions. The inferred physical conditions are
consistent with a canonical cold (T 100 K) neutral medium with a high
density ((H I) 100 cm) and a slightly higher pressure than the
local interstellar medium. Given the simultaneous presence of C I, CO, and the
2175 \AA bump, combined with the high metallicity, high dust depletion level
and overall low ionization state of the gas, the absorber towards J1211+0833
supports the scenario that the presence of the bump requires an evolved stellar
population.Comment: 18 pages, 17 figures, to be published in MNRA
Fusing Monocular Images and Sparse IMU Signals for Real-time Human Motion Capture
Either RGB images or inertial signals have been used for the task of motion
capture (mocap), but combining them together is a new and interesting topic. We
believe that the combination is complementary and able to solve the inherent
difficulties of using one modality input, including occlusions, extreme
lighting/texture, and out-of-view for visual mocap and global drifts for
inertial mocap. To this end, we propose a method that fuses monocular images
and sparse IMUs for real-time human motion capture. Our method contains a dual
coordinate strategy to fully explore the IMU signals with different goals in
motion capture. To be specific, besides one branch transforming the IMU signals
to the camera coordinate system to combine with the image information, there is
another branch to learn from the IMU signals in the body root coordinate system
to better estimate body poses. Furthermore, a hidden state feedback mechanism
is proposed for both two branches to compensate for their own drawbacks in
extreme input cases. Thus our method can easily switch between the two kinds of
signals or combine them in different cases to achieve a robust mocap. %The two
divided parts can help each other for better mocap results under different
conditions. Quantitative and qualitative results demonstrate that by delicately
designing the fusion method, our technique significantly outperforms the
state-of-the-art vision, IMU, and combined methods on both global orientation
and local pose estimation. Our codes are available for research at
https://shaohua-pan.github.io/robustcap-page/.Comment: Accepted by SIGGRAPH ASIA 2023. Project page:
https://shaohua-pan.github.io/robustcap-page
- …