209,711 research outputs found

    Form Invariance of the Neutrino Mass Matrix

    Full text link
    Consider the most general 3×33 \times 3 Majorana neutrino mass matrix M\cal M. Motivated by present neutrino-oscillation data, much theoretical effort is directed at reducing it to a specific texture in terms of a small number of parameters. This procedure is often {\it ad hoc}. I propose instead that for any M\cal M one may choose, it should satisfy the condition UMUT=MU {\cal M} U^T = {\cal M}, where U1U \neq 1 is a specific unitary matrix such that UNU^N represents a well-defined discrete symmetry in the νe,μ,τ\nu_{e,\mu,\tau} basis, NN being a particular integer not necessarily equal to one. I illustrate this idea with a number of examples, including the realistic case of an inverted hierarchy of neutrino masses.Comment: Version to appear in PR

    Comment on ``Signal of Quark Deconfinement in the Timing Structure of Pulsar Spin-Down''

    Get PDF
    This is a comment on a paper by Glendenning, Pei, and Weber (Phys. Rev. Lett., 79, 1603, 1997), where the authors gave an incorrect estimate of the event rate and neglected the important gravitational energy release. Previous work on the same subject is reviewed, and a new suggestion is made to link quark-hadron phase transitions with soft gamma-ray repeaters.Comment: 4 pages; to appear in Phys. Rev. Let

    Deformations of Closed Strings and Topological Open Membranes

    Get PDF
    We study deformations of topological closed strings. A well-known example is the perturbation of a topological closed string by itself, where the associative OPE product is deformed, and which is governed by the WDVV equations. Our main interest will be closed strings that arise as the boundary theory for topological open membranes, where the boundary string is deformed by the bulk membrane operators. The main example is the topological open membrane theory with a nonzero 3-form field in the bulk. In this case the Lie bracket of the current algebra is deformed, leading in general to a correction of the Jacobi identity. We identify these deformations in terms of deformation theory. To this end we describe the deformation of the algebraic structure of the closed string, given by the BRST operator, the associative product and the Lie bracket. Quite remarkably, we find that there are three classes of deformations for the closed string, two of which are exemplified by the WDVV theory and the topological open membrane. The third class remains largely mysterious, as we have no explicit example.Comment: 50 pages, LaTeX; V2: minor changes, 2 references added, V3: typos corrected, signs added, modified discussion on higher correlator

    Nonlocal transistor based on pure crossed Andreev reflection in a EuO-graphene/superconductor hybrid structure

    Get PDF
    We study the interband transport in a superconducting device composed of graphene with EuO-induced exchange interaction. We show that pure crossed Andreev reflection can be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels in an EuO-graphene/superconductor/EuO-graphene device. The pure non-local conductance exhibits rapid on/off switching and oscillatory behavior when the Fermi levels in the normal and the superconducting leads are varied. The oscillation reflects the quasiparticle propagation in the superconducting lead and can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene, which is inaccessible from the current-voltage characteristics. Our results suggest that the device can be used as a highly tunable transistor that operates purely in the non-local and spin-polarized transport regime.Comment: 5 pages, 4 figures; To appear in Phys. Rev.

    An omnidirectional retroreflector based on the transmutation of dielectric singularities

    Full text link
    In the field of transformation optics, metamaterials mimic the effect of coordinate transformations on electromagnetic waves, creating the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here we report the achievement of another "impossible task". We implement, for microwaves, a device that would normally require a dielectric singularity, an infinity in the refractive index. We transmute a singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility, from all directions. Our method is robust, potentially broadband and similar techniques could be applied for visible light

    Distribution of the second virial coefficients of globular proteins

    Full text link
    George and Wilson [Acta. Cryst. D 50, 361 (1994)] looked at the distribution of values of the second virial coefficient of globular proteins, under the conditions at which they crystallise. They found the values to lie within a fairly narrow range. We have defined a simple model of a generic globular protein. We then generate a set of proteins by picking values for the parameters of the model from a probability distribution. At fixed solubility, this set of proteins is found to have values of the second virial coefficient that fall within a fairly narrow range. The shape of the probability distribution of the second virial coefficient is Gaussian because the second virial coefficient is a sum of contributions from different patches on the protein surface.Comment: 5 pages, including 3 figure

    Effect of surface roughness on friction behaviour of steel under boundary lubrication

    Get PDF
    The friction behaviour of grinded and polished surfaces was evaluated by using a reciprocal sliding tester under lubrication with PAO, PAO + ZnDTP and PAO + ZnDTP + MoDTC. Friction coefficients on the smooth surfaces showed higher values compared to those on the rough surfaces. For lubrication incorporating PAO and PAO + ZnDTP + MoDTC, friction coefficients on both the smoothest and the roughest surfaces decreased with sliding time. On the other hand, friction coefficients between these extremes decreased with sliding time. In this paper, the effects of surface roughness on friction behaviour are discussed

    Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress

    Get PDF
    It has been known for about sixty years that proton and heavy ion therapy is a very powerful radiation procedure for treating tumours. It has an innate ability to irradiate tumours with greater doses and spatial selectivity compared with electron and photon therapy and hence is a tissue sparing procedure. For more than twenty years powerful lasers have generated high energy beams of protons and heavy ions and hence it has been frequently speculated that lasers could be used as an alternative to RF accelerators to produce the particle beams necessary for cancer therapy. The present paper reviews the progress made towards laser driven hadron cancer therapy and what has still to be accomplished to realise its inherent enormous potential.Comment: 40 pages, 24 figure
    corecore