6,781 research outputs found

    Exciting polaritons with quantum light

    Full text link
    We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theoretical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.Comment: 5 pages, 3 figure

    A inovação social para o desenvolvimento rural: desafios para as instituições brasileiras.

    Get PDF
    A partir do contexto da Economia do Conhecimento e do papel preponderante dos arranjos institucionais da Ciência & Tecnologia voltados à inovação, o presente artigo tem o objetivo de refletir sobre as possibilidades da inovação social frente aos desafios do desenvolvimento rural. Por meio de uma revisão bibliográfica, discute-se a necessidade de novos significados para o conceito da inovação que proporcionem resultados não exclusivamente econômicos. A partir desse referencial teórico, a metodologia de estudos de caso apresenta as realidades do Centro de Ciências Rurais da Universidade Federal de Santa Catarina (UFSC) e do Centro Nacional de Pesquisa em Pesca e Aquicultura e Sistemas Agrícolas da Empresa Brasileira de Pesquisa Agropecuária (Embrapa) que destacam alternativas de inovações sociais que emergem como possibilidades desses novos significados. O artigo contribui para a maturação do debate da abordagem social nos processos de inovação, em busca de conquistar espaço e atenção dos atores sociais envolvidos, especialmente no contexto do desenvolvimento rural

    Bending modulus of lipid membranes from density correlation functions.

    Get PDF
    The bending modulus κ quantifies the elasticity of biological membranes in terms of the free energy cost of increasing the membrane corrugation. Molecular dynamics (MD) simulations provide a powerful approach to quantify κ by analyzing the thermal fluctuations of the lipid bilayer. However, existing methods require the identification and filtering of non-mesoscopic fluctuation modes. State of the art methods rely on identifying a smooth surface to describe the membrane shape. These methods introduce uncertainties in calculating κ since they rely on different criteria to select the relevant fluctuation modes. Here, we present a method to compute κ using molecular simulations. Our approach circumvents the need to define a mesoscopic surface or an orientation field for the lipid tails explicitly. The bending and tilt moduli can be extracted from the analysis of the density correlation function (DCF). The method introduced here builds on the Bedeaux and Weeks (BW) theory for the DCF of fluctuating interfaces and on the coupled undulatory (CU) mode introduced by us in previous work. We test the BW-DCF method by computing the elastic properties of lipid membranes with different system sizes (from 500 to 6000 lipid molecules) and using coarse-grained (for POPC and DPPC lipids) and fully atomistic models (for DPPC). Further, we quantify the impact of cholesterol on the bending modulus of DPPC bilayers. We compare our results with bending moduli obtained with X-ray diffraction data and different computer simulation methods

    Engulfing a radio pulsar: the case of PSR J1023+0038

    Full text link
    The binary millisecond radio pulsar PSR J1023+0038 has been recently the subject of multiwavelength monitoring campaigns which revealed that an accretion disc has formed around the neutron star (since 2013 June). We present here the results of X-ray and UV observations carried out by the Swift satellite between 2013 October and 2014 May, and of optical and NIR observations performed with the REM telescope, the Liverpool Telescope, the 2.1-m telescope at the San Pedro M\'artir Observatory and the 1.52-m telescope at the Loiano observing station. The X-ray spectrum is well described by an absorbed power law, which is softer than the previous quiescent epoch (up to 2013 June). The strong correlation between the X-ray and the UV emissions indicates that the same mechanism should be responsible for part of the emission in these bands. Optical and infrared photometric observations show that the companion star is strongly irradiated. Double-peaked emission lines in the optical spectra provide compelling evidence for the presence of an outer accretion disc too. The spectral energy distribution from IR to X-rays is well modelled if the contributions from the companion, the disc and the intra-binary shock emission are all considered. Our extensive data set can be interpreted in terms of an engulfed radio pulsar: the radio pulsar is still active, but undetectable in the radio band due to a large amount of ionized material surrounding the compact object. X-rays and gamma-rays are produced in an intra-binary shock front between the relativistic pulsar wind and matter from the companion and an outer accretion disc. The intense spin-down power irradiates the disc and the companion star, accounting for the UV and optical emissions.Comment: 11 pages, 8 figures, 5 tables; accepted for publication on MNRA

    Recurrence of the blue wing enhancements in the high ionization lines of SDSS 1004+4112 A

    Get PDF
    We present integral field spectroscopic observations of the quadruple-lensed QSO SDSS 1004+4112 taken with the fiber system INTEGRAL at the William Herschel Telescope on 2004 January 19. In May 2003 a blueward enhancement in the high ionization lines of SDSS 1004+4112A was detected and then faded. Our observations are the first to note a second event of similar characteristics less than one year after. Although initially attributed to microlensing, the resemblance among the spectra of both events and the absence of microlensing-induced changes in the continuum of component A are puzzling. The lack of a convincing explanation under the microlensing or intrinsic variability hypotheses makes the observed enhancements particularly relevant, calling for close monitoring of this object.Comment: 4 pages, 5 figure

    Structure and Dynamics of the Globular Cluster Palomar 13

    Get PDF
    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s^(–1). We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7^(+0.6)_(–0.5) km s^(–1). Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4^(+0.4)_( –0.3) km s^(–1). We determine a spectroscopic metallicity of [Fe/H] = –1.6 ± 0.1 dex, placing a 1σ upper limit of σ_([Fe/H]) ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be M_V = –2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σ α r^η, η = –2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M_(1/2) = 1.3^(+2:7)_(–1.3) × 10^3 M_☉ and a mass-to-light ratio of M/L_V = 2.4^(+5.0)_(–2.4) M_☉/L_☉. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics

    On the nature of the near-UV extended light in Seyfert galaxies

    Get PDF
    We study the nature of the extended near-UV emission in the inner kiloparsec of a sample of 15 Seyfert galaxies which have both near-UV (F330W) and narrow band [OIII] high resolution Hubble images. For the majority of the objects we find a very similar morphology in both bands. From the [OIII] images we construct synthetic images of the nebular continuum plus the emission line contribution expected through the F330W filter, which can be subtracted from the F330W images. We find that the emission of the ionised gas dominates the near-UV extended emission in half of the objects. A further broad band photometric study, in the bands F330W (U), F547M (V) and F160W (H), shows that the remaining emission is dominated by the underlying galactic bulge contribution. We also find a blue component whose nature is not clear in 4 out of 15 objects. This component may be attributed to scattered light from the AGN, to a young stellar population in unresolved star clusters, or to early-disrupted clusters. Star forming regions and/or bright off-nuclear star clusters are observed in 4/15 galaxies of the sample.Comment: 23 pages, 6 figures, 3 tables; accepted for publication in MNRA

    Critical behaviour of annihilating random walk of two species with exclusion in one dimension

    Full text link
    The A+A0A+A\to 0, B+B0B+B\to 0 process with exclusion between the different kinds is investigated here numerically. Before treating this model explicitly, we study the generalized Domany-Kinzel cellular automaton model of Hinrichsen on the line of the parameter space where only compact clusters can grow. The simplest version is treated with two absorbing phases in addition to the active one. The two kinds of kinks which arise in this case do not react, leading to kinetics differing from standard annihilating random walk of two species. Time dependent simulations are presented here to illustrate the differences caused by exclusion in the scaling properties of usually discussed characteristic quantities. The dependence on the density and composition of the initial state is most apparent. Making use of the parallelism between this process and directed percolation limited by a reflecting parabolic surface we argue that the two kinds of kinks exert marginal perturbation on each other leading to deviations from standard annihilating random walk behavior.Comment: 12 pages, 16 figures, small typos corrected, 2 references adde
    corecore