22 research outputs found

    Validation and Optimization of Barrow Neurological Institute Score in Prediction of Adverse Events and Functional Outcome After Subarachnoid Hemorrhage-Creation of the HATCH (Hemorrhage, Age, Treatment, Clinical State, Hydrocephalus) Score.

    Get PDF
    BACKGROUND: The Barrow Neurological Institute (BNI) score, measuring maximal thickness of aneurysmal subarachnoid hemorrhage (aSAH), has previously shown to predict symptomatic cerebral vasospasms (CVSs), delayed cerebral ischemia (DCI), and functional outcome. OBJECTIVE: To validate the BNI score for prediction of above-mentioned variables and cerebral infarct and evaluate its improvement by integrating further variables which are available within the first 24 h after hemorrhage. METHODS: We included patients from a single center. The BNI score for prediction of CVS, DCI, infarct, and functional outcome was validated in our cohort using measurements of calibration and discrimination (area under the curve [AUC]). We improved it by adding additional variables, creating a novel risk score (measure by the dichotomized Glasgow Outcome Scale) and validated it in a small independent cohort. RESULTS: Of 646 patients, 41.5% developed symptomatic CVS, 22.9% DCI, 23.5% cerebral infarct, and 29% had an unfavorable outcome. The BNI score was associated with all outcome measurements. We improved functional outcome prediction accuracy by including age, BNI score, World Federation of Neurologic Surgeons, rebleeding, clipping, and hydrocephalus (AUC 0.84, 95% CI 0.8-0.87). Based on this model we created a risk score (HATCH-Hemorrhage, Age, Treatment, Clinical State, Hydrocephalus), ranging 0 to 13 points. We validated it in a small independent cohort. The validated score demonstrated very good discriminative ability (AUC 0.84 [95% CI 0.72-0.96]). CONCLUSION: We developed the HATCH score, which is a moderate predictor of DCI, but excellent predictor of functional outcome at 1 yr after aSAH

    Wound dressings for a proteolytic-rich environment

    Get PDF
    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed

    Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction

    Full text link
    Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation

    Tissue-Engineered Heart Valves

    No full text
    A tissue engineered heart valve (TEHV) could serve as a living, implantable valve replacement that would grow and adapt with the patient. A TEHV consists of relevant cells seeded on or entrapped in a scaffold material which is designed to degrade as the cells produce their own extracellular matrix components. Because the valve consists of living tissue, it can grow and remodel as a patient ages, making it an especially attractive replacement option for pediatric and young adult patients. To date, using various cell sources, scaffold materials, and/or in vitro culture protocols, several laboratories have produced TEHVs with the appropriate geometry and near-native mechanical properties. TEHVs implanted in the pulmonary position in sheep in our laboratory have shown promising short-term functionality but fail to maintain good performance after several months in vivo. Upcoming TEHV research will focus on optimization of TEHV components and in vitro culture conditions in order to improve long-term function post-implant, with the hope of performing human implants in the future
    corecore