19 research outputs found

    On the general theory of the origins of retroviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations <b>(Vm) </b>and host adaptability <b>(Ha)</b>); along with interplay between <it>inhibitors </it>and <it>promoters </it>of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact <it>modus operadi </it>of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses.</p> <p>Methods and results</p> <p>On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species <it>Xy </it>to <it>Homo sapiens </it>(<it>Hs</it>), initially excluding all social factors, the following was derived. At the port of exit from <it>Xy </it>(where the species barrier, SB, is defined by the <it>Index of Origin</it>, IO), sfv shedding is (1) enhanced by two transmitting tensors <b>(Tt)</b>, (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e<sup>2</sup>D); and (2) opposed by the five accepting scalars <b>(At)</b>: (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit <b>(</b>NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓<sub>pH </sub>CMat). Assuming <b>As </b>and <b>Tt </b>to be independent variables, <b>IO = Tt/As</b>. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the <it>Index of Entry</it>, <b>IE = As/Tt</b>). Overall, If sfv encounters no unforeseen effects on transit between X<it>y </it>and <it>Hs</it>, then the square root of the combined index of sfv transmissibility (√<b>|RTI|) </b>is proportional to the product IO* IE (or ~Vm* Ha* ∑Tt*∑As*<b>Ω</b>), where <b>Ω </b>is the retrovirological constant and ∑ is a function of the ratio Tt/As or As/Tt for sfv transmission from <it>Xy </it>to <it>Hs</it>.</p> <p>Conclusions</p> <p>I present a mathematical formalism encapsulating the general theory of the origins of retroviruses. It summarizes the choreography for the intertwined interplay of factors influencing the probability of retroviral cross-species transmission: <b>Vm, Ha, Tt, As, </b>and <b>Ω</b>.</p

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced
    corecore