36 research outputs found

    Hepcidin-25 in Chronic Hemodialysis Patients Is Related to Residual Kidney Function and Not to Treatment with Erythropoiesis Stimulating Agents

    Get PDF
    Hepcidin-25, the bioactive form of hepcidin, is a key regulator of iron homeostasis as it induces internalization and degradation of ferroportin, a cellular iron exporter on enterocytes, macrophages and hepatocytes. Hepcidin levels are increased in chronic hemodialysis (HD) patients, but as of yet, limited information on factors associated with hepcidin-25 in these patients is available. In the current cross-sectional study, potential patient-, laboratory- and treatment-related determinants of serum hepcidin-20 and -25, were assessed in a large cohort of stable, prevalent HD patients. Baseline data from 405 patients (62% male; age 63.7±13.9 [mean SD]) enrolled in the CONvective TRAnsport STudy (CONTRAST; NCT00205556) were studied. Predialysis hepcidin concentrations were measured centrally with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patient-, laboratory- and treatment related characteristics were entered in a backward multivariable linear regression model. Hepcidin-25 levels were independently and positively associated with ferritin (p<0.001), hsCRP (p<0.001) and the presence of diabetes (p = 0.02) and inversely with the estimated glomerular filtration rate (p = 0.01), absolute reticulocyte count (p = 0.02) and soluble transferrin receptor (p<0.001). Men had lower hepcidin-25 levels as compared to women (p = 0.03). Hepcidin-25 was not associated with the maintenance dose of erythropoiesis stimulating agents (ESA) or iron therapy. In conclusion, in the currently studied cohort of chronic HD patients, hepcidin-25 was a marker for iron stores and erythropoiesis and was associated with inflammation. Furthermore, hepcidin-25 levels were influenced by residual kidney function. Hepcidin-25 did not reflect ESA or iron dose in chronic stable HD patients on maintenance therapy. These results suggest that hepcidin is involved in the pathophysiological pathway of renal anemia and iron availability in these patients, but challenges its function as a clinical parameter for ESA resistance

    Is it time to embrace haemodiafiltration for centre-based haemodialysis?

    No full text
    Improvements in survival in dialysis patients over the past few decades have been disappointing. Recent prospective trials such the haemodialysis study have not shown conclusive improvements. Two recent observational studies have found a striking survival advantage for haemodiafiltration (HDF). This review covers the differences between HDF and conventional haemodialysis (HD) and the history of the technological advances in the HDF technique. In addition, it explores the putative benefits of HDF over HD. While the observational studies provide a basis for optimism that HDF will provide benefit to dialysis patients, definitive conclusions cannot be drawn until the results of randomized controlled trials are available. While the evidence in favour of HDF at this stage is observational only, there are no studies suggesting that the treatment is detrimental. The use of HDF should probably be increased, particularly in centres where an increase in the frequency and duration of dialysis cannot be readily achieved
    corecore