287 research outputs found

    In vitro metabolism of the synthetic cannabinoid 3,5-AB-CHMFUPPYCA and its 5,3-regioisomer and investigation of their thermal stability.

    Get PDF
    Recently, the pyrazole-containing synthetic cannabinoid N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) has been identified as a 'research chemical' both in powdered form and as an adulterant present in herbal preparations. Urine is the most common matrix used for abstinence control and the extensive metabolism of synthetic cannabinoids requires implementation of targeted analysis. The present study describes the investigation of the in vitro phase I metabolism of 3,5-AB-CHMFUPPYCA and its regioisomer 5,3-AB-CHMFUPPYCA using pooled human liver microsomes. Metabolic patterns of both AB-CHMFUPPYCA isomers were qualitatively similar and dominated by oxidation of the cyclohexylmethyl side chain. Biotransformation to monohydroxylated metabolites of high abundance confirmed that these species might serve as suitable targets for urine analysis. Furthermore, since synthetic cannabinoids are commonly administered by smoking and because some metabolites can also be formed as thermolytic artefacts, the stability of both isomers was assessed under smoking conditions. Under these conditions, pyrolytic cleavage of the amide bond occurred that led to approximately 3 % conversion to heat-induced degradation products that were also detected during metabolism. These artefactual 'metabolites' could potentially bias in vivo metabolic profiles after smoking and might have to be considered for interpretation of metabolite findings during hair analysis. This might be relevant to the analysis of hair samples where detection of metabolites is generally accepted as a strong indication of drug use rather than a potential external contamination. Copyright © 2016 John Wiley & Sons, Ltd

    A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation

    Get PDF
    IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer

    MAGE I Transcription Factors Regulate KAP1 and KRAB Domain Zinc Finger Transcription Factor Mediated Gene Repression

    Get PDF
    Class I MAGE proteins (MAGE I) are normally expressed only in developing germ cells but are aberrantly expressed in many cancers. They have been shown to promote tumor survival, aggressive growth, and chemoresistance but the underlying mechanisms and MAGE I functions have not been fully elucidated. KRAB domain zinc finger transcription factors (KZNFs) are the largest group of vertebrate transcription factors and regulate neoplastic transformation, tumor suppression, cellular proliferation, and apoptosis. KZNFs bind the KAP1 protein and direct KAP1 to specific DNA sequences where it suppresses gene expression by inducing localized heterochromatin characterized by histone 3 lysine 9 trimethylation (H3me3K9). Discovery that MAGE I proteins also bind to KAP1 prompted us to investigate whether MAGE I can affect KZNF and KAP1 mediated gene regulation. We found that expression of MAGE I proteins, MAGE-A3 or MAGE-C2, relieved repression of a reporter gene by ZNF382, a KZNF with tumor suppressor activity. ChIP of MAGE I (-) HEK293T cells showed KAP1 and H3me3K9 are normally bound to the ID1 gene, a target of ZNF382, but that binding is greatly reduced in the presence of MAGE I proteins. MAGE I expression relieved KAP1 mediated ID1 repression, causing increased expression of ID1 mRNA and ID1 chromatin relaxation characterized by loss of H3me3K9. MAGE I binding to KAP1 also induced ZNF382 poly-ubiquitination and degradation, consistent with loss of ZNF382 leading to decreased KAP1 binding to ID1. In contrast, MAGE I expression caused increased KAP1 binding to Ki67, another KAP1 target gene, with increased H3me3K9 and decreased Ki67 mRNA expression. Since KZNFs are required to direct KAP1 to specific genes, these results show that MAGE I proteins can differentially regulate members of the KZNF family and KAP1 mediated gene repression

    Video classification with Densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off

    Get PDF
    The current state-of-the-art in video classification is based on Bag-of-Words using local visual descriptors. Most commonly these are histogram of oriented gradients (HOG), histogram of optical flow (HOF) and motion boundary histograms (MBH) descriptors. While such approach is very powerful for classification, it is also computationally expensive. This paper addresses the problem of computational efficiency. Specifically: (1) We propose several speed-ups for densely sampled HOG, HOF and MBH descriptors and release Matlab code; (2) We investigate the trade-off between accuracy and computational efficiency of descriptors in terms of frame sampling rate and type of Optical Flow method; (3) We investigate the trade-off between accuracy and computational efficiency for computing the feature vocabulary, using and comparing most of the commonly adopted vector quantization techniques: k-means, hierarchical k-means, Random Forests, Fisher Vectors and VLAD

    Max-Margin Dictionary Learning for Multiclass Image Categorization

    Full text link
    Abstract. Visual dictionary learning and base (binary) classifier train-ing are two basic problems for the recently most popular image cate-gorization framework, which is based on the bag-of-visual-terms (BOV) models and multiclass SVM classifiers. In this paper, we study new algo-rithms to improve performance of this framework from these two aspects. Typically SVM classifiers are trained with dictionaries fixed, and as a re-sult the traditional loss function can only be minimized with respect to hyperplane parameters (w and b). We propose a novel loss function for a binary classifier, which links the hinge-loss term with dictionary learning. By doing so, we can further optimize the loss function with respect to the dictionary parameters. Thus, this framework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies.</p> <p>Methods/Design</p> <p>The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m<sup>2 </sup>bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m<sup>2 </sup>BID for 14d (d1-14), irinotecan 200 mg/m<sup>2 </sup>(d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life.</p> <p>Conclusion</p> <p>The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single-agent chemotherapy (Cape-Bev) allowing escalation to CAPIRI-Bev and another starting with combination chemotherapy (CAPIRI-Bev) and allowing de-escalation to Cape-Bev and subsequent re-escalation if necessary.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01249638">NCT01249638</a></p> <p>EudraCT-No.: 2009-013099-38</p

    Epstein-Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex

    Get PDF
    Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer

    Transformation induced by Ewing's sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1

    Get PDF
    Ewing's sarcoma is a childhood bone tumour with poor prognosis, most commonly associated with a t(11;22)(q24;q12) reciprocal translocation that fuses the EWS and FLI-1 genes, resulting in the production of an aberrant chimeric transcription factor EWS/FLI-1. To erucidate the mechanisms by which EWS/FLI-1 mediates transformation in mouse models, we have generated a murine Ews/Fli-1 fusion protein. We demonstrate that this protein transforms fibroblast celrs in vitro similar to human EWS/FLI-1 as demonstrated by serum and anchorage-independent growth, the formation of tumours in nude mice and elevation of the oncogenic marker c-myc. Furthermore, transformation of these cells was inhibited by a specific represser, KRAB/FLI-1. The KRAB/FLI-1 repressor also suppressed the tumorigenic phenotype of a human Ewing's sarcoma cell line. These findings suggest that the transformed phenotype of Ewing's sarcoma cells can be reversed by using the sequence-specific FLI-1-DNA-binding domain to target a gone repressor domain. The inhibition of EWS/FLI-1 is the first demonstration of the KRAB domain suppressing the action of an ETS factor. This approach provides potential avenues for the elucidation of the biological mechanisms of EWS/FLI-1 oncogenesis and the development of novel therapeutic strategies. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study

    Get PDF
    Three forms of lactoferrin (Lf) that differed in their levels of iron loading (Lf, LfFe, and LfFe2) were simultaneously labeled with the fluorophores AF350 and AF430. All three resulting fluorescent lactoferrins exhibited fluorescence resonance energy transfer (FRET), but they all presented different FRET patterns. Whereas only partial FRET was observed for Lf and LfFe, practically complete FRET was seen for the holo form (LfFe2). For each form of metal-loaded lactoferrin, the AF350–AF430 distance varied depending on the protein conformation, which in turn depended on the level of iron loading. Thus, the FRET patterns of these lactoferrins were found to correlate with their iron loading levels. In order to gain greater insight into the number of fluorophores and the different FRET patterns observed (i.e., their iron levels), a computational analysis was performed. The results highlighted a number of lysines that have the greatest influence on the FRET profile. Moreover, despite the lack of an X-ray structure for any LfFe species, our study also showed that this species presents modified subdomain organization of the N-lobe, which narrows its iron-binding site. Complete domain rearrangement occurs during the LfFe to LfFe2 transition. Finally, as an example of the possible applications of the results of this study, we made use of the FRET fingerprints of these fluorescent lactoferrins to monitor the interaction of lactoferrin with a healthy bacterium, namely Bifidobacterium breve. This latter study demonstrated that lactoferrin supplies iron to this bacterium, and suggested that this process occurs with no protein internalization.This work was supported by MINECO and FEDER (projects CTQ2012-32236, CTQ2011-23336, and BIO2012-39682-C02-02) and BIOSEARCH SA. F.C. and V.M.R. are grateful to the Spanish MINECO for FPI fellowships
    corecore