96 research outputs found
Evaluation and Expected Changes of Summer Precipitation at Convection Permitting Scale with COSMO-CLM over Alpine Space
There is an ongoing debate in the climate community about the benefits of convection-permitting models that explicitly resolve convection and other thermodynamical processes. An increasing number of studies show improvements in Regional Climate Model (RCM) performances when the grid spacing is increased to 1-km scale. Up until now, such studies have revealed that convection-permitting models confer significant advantages in representing orographic regions, producing high-order statistics, predicting events with small temporal and spatial scales, and representing convective organization. The focus of this work is on the analysis of summer precipitation over the Alpine space. More specifically, the driving data are downscaled using the RCM COSMO-CLM first at an intermediate resolution (12 km) over the European Domain of Coordinated Downscaling Experiment (EURO-CORDEX domain). Then, a further downscaling at 3 km, nested into the previous one, is performed over the Alpine domain to exploit the results over a complex orography context. Experiments of evaluation, historical and far future under the Intergovernmental Panel on Climate Change (IPCC) RCP8.5 scenario have been considered. Indices as mean precipitation, frequency, intensity, and heavy precipitation are employed in daily and hourly analyses. The results, observed from the analysis of 10 year-long simulations, provide preliminary indications, highlighting significant differences of the convection permitting simulations with respect to the driving one, especially at an hourly time scale. Moreover, future projections suggest that the convection permitting simulation refines and enhances the projected patterns, compared with the coarser resolution
Spatio-Temporal Pattern and Meteo-Climatic Determinants of Visceral Leishmaniasis in Italy
Historically, visceral leishmaniasis (VL) in Italy was constrained to Mediterranean areas. However, in the last 20 years, sand fly vectors and human cases of VL have been detected in northern Italy, traditionally classified as a cold area unsuitable for sand fly survival. We aim to study the spatio-temporal pattern and climatic determinants of VL incidence in Italy. National Hospital Discharge Register records were used to identify incident cases of VL between 2009 and 2016. Incident rates were computed for each year (N = 8) and for each province (N = 110). Data on mean temperature and cumulative precipitation were obtained from the ERA5-Land re-analysis. Age- and sex-standardized incidence rates were modeled with Bayesian spatial and spatio-temporal conditional autoregressive Poisson models in relation to the meteo-climatic parameters. Statistical inference was based on Monte CarloâMarkov chains. We identified 1123 VL cases (incidence rate: 2.4 cases/1,000,000 person-years). The highest incidence rates were observed in southern Italy, even though some areas of northern Italy experienced high incidence rates. Overall, in the spatial analysis, VL incidence rates were positively associated with average air temperatures ([Formula: see text] for 1 °C increase in average mean average temperature: 0.14; 95% credible intervals (CrI): 0.01, 0.27) and inversely associated with average precipitation ([Formula: see text] for 20 mm increase in average summer cumulative precipitation: â0.28, 95% CrI: â0.42, â0.13). In the spatio-temporal analysis, no association between VL cases and season-year specific temperature and precipitation anomalies was detected. Our findings indicate that VL is endemic in the whole Italian peninsula and that climatic factors, such as air temperature and precipitation, might play a relevant role in shaping the geographical distribution of VL cases. These results support that climate change might affect leishmaniasis distribution in the future
Comparing Different Modelling Strategies for the Estimation of Climate Change Effects on Urban Pluvial Flooding
In this paper, two different strategies are presented that allow for the assessment of
the effects of climate change on urban pluvial flooding, in order to understand potentialities and
limitations, advantages and drawbacks. The two strategies are hereby defined as âtop-downâ and
âbottom-upâ, according to the relative position of climate change modelling with respect to flood
modelling (upstream for top-down, downstream for bottom-up). To provide a practical example, the
two strategies are applied to a case study located in Naples, Italy. However, they can be successfully
extended for the assessment of any potential impact of climate change in any location
The snow load in Europe and the climate change
It is often assumed that, as a consequence of global warming, a reduction of snow load on the ground should be expected. In reality, snow load is often depending on local orographic situations that can determine an increase of its height, even when the average snow height over the surrounding areas is reduced. Large snow loads on roofs during the winter season of 2005â2006 led to over 200 roof collapses in Central Europe. To proceed with the adaptation of the European standards for important buildings and infrastructures to the implications of climate change, the expected changes in the climatic loading shall be assessed in terms of the Eurocodes concept for characteristic values of variable climatic actions. The paper presents a procedure for derivation of snow load on ground from data on daily temperatures and precipitation. In addition, it allows to derive the characteristic snow loads from climate change projections and thus to evaluate the future trends in variation of snow loading. Analysis of these trends for the Italian territory is performed by comparing the results for several subsequent time periods of thirty years, with those obtained for the reference period 1951â1980. Results presented show a significant increase in the snow loading for the period 1981â2010 in many regions in north and east Italy in comparison with the reference period. It is suggested that a European project on snow load map shall be started, in order to help National Competent Authorities to redraft the national snow load maps for design with the Eurocodes
Towards new European snow load map: Support to policies and standards for sustainable construction
The Mandate M/515 of the European Commission to CEN requested the assessment of the climate change implications for the Eurocodes, the European standards for structural design. The European Commission Mandate M/526 requested the European Standards Organisations (ESOs) to contribute to building and maintaining a more climate resilient infrastructure throughout the EU in the three priority sectors: transport infrastructure, energy infrastructure, and buildings/construction. To proceed with the envisaged adaptation of the European standards to the implications of climate change, the expected changes in the climatic loading shall be assessed in terms of the Eurocodes concept for the characteristic values of the variable climatic actions. The present report justifies the need of a European research project to develop an advanced procedure for deriving snow load on structures, taking into account climate change projections, and to set up a new European snow load map based on this procedure
Micro-scale {UHI} risk assessment on the heat-health nexus within cities by looking at socio-economic factors and built environment characteristics: The Turin case study (Italy)
Today the most substantial threats facing cities relate to the impacts of climate change. Extreme temperature such as heat waves and the occurrence of Urban Heat Island (UHI) phenomena, present the main challenges for urban planning and design. Climate deterioration exacerbates the already existing weaknesses in social systems, which have been created by changes such as population increases and urban sprawl. Despite numerous attempts by researchers to assess the risks associated with the heat-health nexus in urban areas, no common metrics have yet been defined yet. The objective of this study, therefore, is to provide an empirical example of a flexible and replicable methodology to estimate the micro-scale UHI risks within an urban context which takes into account all the relevant elements regarding the heat-health nexus. For this purpose, the city of Turin has been used as a case study. The methodological approach adopted is based on risk assessment guidelines suggested and approved by the most recent scientific literature. The risk framework presented here used a quantitative estimate per each census tract within the city based on the interaction of three main factors: hazard, exposure, and vulnerability. Corresponding georeferenced maps for each indicator have been provided to increase the local knowledge on the spatial distribution of vulnerability drivers. The proposed methodology and the related findings represent an initial stage of the urban risk investigation within the case study. This will include participatory processes with local policymakers and health-stakeholders with a view to guiding the local planning agenda of climate change adaptation and resilience strategies in the City of Turin
Evaluation of atmospheric indicators in the Adriatic coastal areas: a multi-hazards approach for a better awareness of the current and future climate
Increasing climate resilience to global warming is one of the main challenges of the last few decades. Effective local measures have to be adopted to provide concrete solutions to the current and expected impacts of climate change. This is the goal of the AdriaClim Italia-Croatia Interreg Project (https://www.italy-croatia.eu/web/adriaclim), aimed at supporting the development of regional and local climate change adaptation plans for the Adriatic coastal regions. For this purpose, an exhaustive number of atmospheric climate indicators have been identified and evaluated across nine pilot areas to assess the current and expected main climate hazards affecting these regions, considering the worst-case emissions scenario (Representative Concentration Pathway RCP 8.5). The proposed analyses are provided by the results of the regional climate atmospheric model developed within the AdriaClim Project. The selected climate indicators are used to assess the possible evolution of the climate hazard across the pilot areas, covering different hazards, such as thermal discomfort, drought, and hydrological instability. A site-dependent investigation of the atmospheric climate indicators is proposed to emphasize which regions are more affected than others by the investigated climate hazards, thus warranting more attention in defining and proposing new adaptation strategies. The results highlight increasing temperatures (up to +3°C) across the Adriatic coastal regions, with more emphasis on the Northern Adriatic, where the combined effect with the relevant decrease in precipitation (down to â2âmm/day) may lead to severe drought conditions in the coming decades. In contrast, precipitation-related diseases may hit more Central and South Italy than the Northern Adriatic, except for the Emilia-Romagna region, which is found to be highly sensitive to both hazard categories. Finally, it is relevant to emphasize that these analyses have to be carefully considered in supporting adaptation strategies due to the lack of uncertainty estimates representing a fundamental element for decision-makers
The ARGO Project: assessing NA-TECH risks on offshore oil platforms
Abstract Analysis of natural and anthRopoGenic risks on Offshore platforms (ARGO) is a 3-years project, funded by the Italian Ministry of Economic Development. The project, coordinated by AMRA, a permanent Research Centre for the development of innovative technologies applied to environmental problems, aims at providing technical-support for the analysis of natural and anthropogenic risks on offshore oil-platforms. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore platforms. The final analysis of the ARGO Project suggest a constant monitoring of exploitation activity, fluids re-injection and storage using high technology networks
- âŠ