5,116 research outputs found

    q-Deformed Brownian Motion

    Full text link
    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.Comment: 6 page

    On the nonlinearity interpretation of q- and f-deformation and some applications

    Full text link
    q-oscillators are associated to the simplest non-commutative example of Hopf algebra and may be considered to be the basic building blocks for the symmetry algebras of completely integrable theories. They may also be interpreted as a special type of spectral nonlinearity, which may be generalized to a wider class of f-oscillator algebras. In the framework of this nonlinear interpretation, we discuss the structure of the stochastic process associated to q-deformation, the role of the q-oscillator as a spectrum-generating algebra for fast growing point spectrum, the deformation of fermion operators in solid-state models and the charge-dependent mass of excitations in f-deformed relativistic quantum fields.Comment: 11 pages Late

    Time-Dependent Invariants for Dirac Equation and Newton-Wigner Position Operator

    Get PDF
    For Dirac equation, operator-invariants containing explicit time-dependence in parallel to known time-dependent invariants of nonrelativistic Schr\"odinger equation are introduced and discussed. As an example, a free Dirac particle is considered and new invariants are constructed for it. The integral of motion, which is initial Newton-Wigner position operator, is obtained explicitly for a free Dirac particle. For such particle with kick modeled by delta-function of time, the time-depending integral, which has physical meaning of initial momentum, is found.Comment: LATEX,21 pages,submitted to Physica Script

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Bioactives compounds in black garlic from different brazilian cultivars.

    Get PDF
    In this work aimed to study the differences bioative compounds produced in black garlic from Brazilian garlic cultivars (Santa Catarina, Amarante, Gigante Roxo)

    Geometry, stochastic calculus and quantum fields in a non-commutative space-time

    Full text link
    The algebras of non-relativistic and of classical mechanics are unstable algebraic structures. Their deformation towards stable structures leads, respectively, to relativity and to quantum mechanics. Likewise, the combined relativistic quantum mechanics algebra is also unstable. Its stabilization requires the non-commutativity of the space-time coordinates and the existence of a fundamental length constant. The new relativistic quantum mechanics algebra has important consequences on the geometry of space-time, on quantum stochastic calculus and on the construction of quantum fields. Some of these effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur
    • ā€¦
    corecore