629 research outputs found
Primary immunodeficiency
Primary immunodeficiency disorder (PID) refers to a heterogeneous group of over 130 disorders that result from defects in immune system development and/or function. PIDs are broadly classified as disorders of adaptive immunity (i.e., T-cell, B-cell or combined immunodeficiencies) or of innate immunity (e.g., phagocyte and complement disorders). Although the clinical manifestations of PIDs are highly variable, most disorders involve at least an increased susceptibility to infection. Early diagnosis and treatment are imperative for preventing significant disease-associated morbidity and, therefore, consultation with a clinical immunologist is essential. PIDs should be suspected in patients with: recurrent sinus or ear infections or pneumonias within a 1 year period; failure to thrive; poor response to prolonged use of antibiotics; persistent thrush or skin abscesses; or a family history of PID. Patients with multiple autoimmune diseases should also be evaluated. Diagnostic testing often involves lymphocyte proliferation assays, flow cytometry, measurement of serum immunoglobulin (Ig) levels, assessment of serum specific antibody titers in response to vaccine antigens, neutrophil function assays, stimulation assays for cytokine responses, and complement studies. The treatment of PIDs is complex and generally requires both supportive and definitive strategies. Ig replacement therapy is the mainstay of therapy for B-cell disorders, and is also an important supportive treatment for many patients with combined immunodeficiency disorders. The heterogeneous group of disorders involving the T-cell arm of the adaptive system, such as severe combined immunodeficiency (SCID), require immune reconstitution as soon as possible. The treatment of innate immunodeficiency disorders varies depending on the type of defect, but may involve antifungal and antibiotic prophylaxis, cytokine replacement, vaccinations and bone marrow transplantation. This article provides a detailed overview of the major categories of PIDs and strategies for the appropriate diagnosis and management of these rare disorders
Symptomatic hypogammaglobulinemia in infancy and childhood – clinical outcome and in vitro immune responses
BACKGROUND: Symptomatic hypogammaglobulinemia in infancy and childhood (SHIC), may be an early manifestation of a primary immunodeficiency or a maturational delay in the normal production of immunoglobulins (Ig). We aimed to evaluate the natural course of SHIC and correlate in vitro lymphoproliferative and secretory responses with recovery of immunoglobulin values and clinical resolution. METHODS: Children, older than 1 year of age, referred to our specialist clinic because of recurrent infections and serum immunoglobulin (Ig) levels 2 SD below the mean for age, were followed for a period of 8 years. Patient with any known familial, clinical or laboratory evidence of cellular immunodeficiency or other immunodeficiency syndromes were excluded from this cohort. Evaluation at 6- to 12-months intervals continued up to 1 year after resolution of symptoms. In a subgroup of patients, in vitro lymphocyte proliferation and Ig secretion in response to mitogens was performed. RESULTS: 32 children, 24 (75%) males, 8 (25%) females, mean age 3.4 years fulfilled the inclusion criteria. Clinical presentation: ENT infections 69%, respiratory 81%, diarrhea 12.5%. During follow-up, 17 (53%) normalized serum Ig levels and were diagnosed as transient hypogammaglobulinemia of infancy (THGI). THGI patients did not differ clinically or demographically from non-transient patients, both having a benign clinical outcome. In vitro Ig secretory responses, were lower in hypogammaglobulinemic, compared to normal children and did not normalize concomitantly with serum Ig's in THGI patients. CONCLUSIONS: The majority of children with SHIC in the first decade of life have THGI. Resolution of symptoms as well as normalization of Ig values may be delayed, but overall the clinical outcome is good and the clinical course benign
Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement
<div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div
Selective IgA Deficiency
Immunoglobulin A (IgA) deficiency is the most common primary immunodeficiency defined as decreased serum level of IgA in the presence of normal levels of other immunoglobulin isotypes. Most individuals with IgA deficiency are asymptomatic and identified coincidentally. However, some patients may present with recurrent infections of the respiratory and gastrointestinal tracts, allergic disorders, and autoimmune manifestations.
Although IgA is the most abundant antibody isotype produced in the body, its functions are not clearly understood. Subclass IgA1 in monomeric form is mainly found in the blood circulation, whereas subclass IgA2 in dimeric form is the dominant immunoglobulin in mucosal secretions. Secretory IgA appears to have prime importance in immune exclusion of pathogenic microorganisms and maintenance of intestinal homeostasis. Despite this critical role, there may be some compensatory mechanisms that would prevent disease manifestations in some IgA-deficient individuals.
In IgA deficiency, a maturation defect in B cells to produce IgA is commonly observed. Alterations in transmembrane activator and calcium modulator and cyclophilin ligand interactor gene appear to act as disease-modifying mutations in both IgA deficiency and common variable immunodeficiency, two diseases which probably lie in the same spectrum. Certain major histocompatibility complex haplotypes have been associated with susceptibility to IgA deficiency.
The genetic basis of IgA deficiency remains to be clarified. Better understanding of the production and function of IgA is essential in elucidating the disease mechanism in IgA deficiency
Campylobacter jejuni bacteremia and Helicobacter pylori in a patient with X-linked agammaglobulinemia
We describe a 15-year-old patient with X-linked agammaglobulinemia who developed malabsorption and bacteremia due to infection of Helicobacter pylori and Campylobacter jejuni. The Campylobacter bacteremia was only recognized after subculturing of blood culture bottles that failed to signal in the automated system. After 2Â weeks of treatment with meropenem and erythromycin for 4Â weeks, the patient developed a relapse of bacteremia 10Â months later with a high level erythromycin resistant C. jejuni. Sequencing revealed an A2058C mutation in the 23 S rRNA gene associated with this resistance. Treatment with doxycycline for 4Â weeks finally resulted in complete eradication. This case report illustrates the importance for physicians to use adapted culture methods and adequate prolonged therapy in patients with an immunodeficiency. A summary of published case reports and series of patients with hypogammaglobulinemia or agammaglobulinemia with Campylobacter or Helicobacter bacteremia is given
Aromatase gene and its effects on growth, reproductive and maternal ability traits in a multibreed sheep population from Brazil
We determined the polymorphism C242T of the aromatase gene (Cyp19) and its allelic frequency, as well as the effect of the variants on productive and reproductive traits in 71 purebred Santa Inês sheep, 13 purebred Brazilian Somali sheep, nine purebred Poll Dorset sheep, and 18 crossbred 1/2 Dorper sheep. The animals were genotyped using the PCR-RFLP technique. The influence of the animal's genotype on its performance or on the performance of its lambs was analyzed by the least square method. Another factor assessed was the importance of the animal's genotype in analysis models for quantitative breeding value estimates, and whether there were differences among the averages of breeding values of animals with different genotypes for this gene. In the sample studied, no AA individuals were observed; the AB and BB frequencies were 0.64 and 0.36, respectively. All Brazilian Somali sheep were of genotype BB. All 1/2 Dorper BB animals presented a lower age at first lambing, and the Santa Inês BB ewes presented a lower lambing interval. In these same genetic groups, AB ewes presented higher litter weight at weaning. This is evidence that BB ewes have a better reproductive performance phenotype, whereas AB ewes present a better maternal ability phenotype. However, in general, animals with genotype AB presented better average breeding values than those with genotype BB
Spectrofluorimetric determination of sertraline in dosage forms and human plasma through derivatization with 9-fluorenylmethyl chloroformate
<p>Abstract</p> <p>Background</p> <p>Sertraline is primarily used to treat major depression in adult outpatients as well as obsessive-compulsive, panic and social anxiety disorders in both adults and children. A survey of the literature reveals that most of the reported methods are either insufficiently sensitive or tedious and require highly sophisticated and dedicated instrumentation. The proposed method is considered to be specific for determination of SER in presence of its metabolite (deaminated form).</p> <p>Results</p> <p>A sensitive, simple and specific spectrofluorimetric method was developed for the determination of sertraline (SER) in pharmaceutical formulations and biological fluids. The method is based on its reaction with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer of pH 8.0 to yield a highly fluorescent derivative peaking at 315 nm after excitation at 265 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence concentration plot was rectilinear over the range of 0.05-1.0 μg mL<sup>-1 </sup>with a lower detection limit of 5.34 × 10<sup>-3 </sup>μg mL<sup>-1 </sup>and limit of quantitation of 0.016 μg mL<sup>-1</sup>.</p> <p>Conclusions</p> <p>The proposed method was successfully applied to the analysis of commercial tablets and the results obtained were in good agreement with those obtained using the reference method. Furthermore, the method was applied for the determination of SER in spiked and real human plasma. The mean % recovery (n = 3) was 94.33 ± 1.53 and 92.00 ± 2.65, respectively. A proposal of the reaction pathway was postulated.</p
- …