4 research outputs found

    Distribution of Introns in Fungal Histone Genes

    Get PDF
    Saccharomycotina and Taphrinomycotina lack intron in their histone genes, except for an intron in one of histone H4 genes of Yarrowia lipolytica. On the other hand, Basidiomycota and Perizomycotina have introns in their histone genes. We compared the distributions of 81, 47, 79, and 98 introns in the fungal histone H2A, H2B, H3, and H4 genes, respectively. Based on the multiple alignments of the amino acid sequences of histones, we identified 19, 13, 31, and 22 intron insertion sites in the histone H2A, H2B, H3, and H4 genes, respectively. Surprisingly only one hot spot of introns in the histone H2A gene is shared between Basidiomycota and Perizomycotina, suggesting that most of introns of Basidiomycota and Perizomycotina were acquired independently. Our findings suggest that the common ancestor of Ascomycota and Basidiomycota maybe had a few introns in the histone genes. In the course of fungal evolution, Saccharomycotina and Taphrinomycotina lost the histone introns; Basidiomycota and Perizomycotina acquired other introns independently. In addition, most of the introns have sequence similarity among introns of phylogenetically close species, strongly suggesting that horizontal intron transfer events between phylogenetically distant species have not occurred recently in the fungal histone genes

    Adventitious rooting and xylogenesis are enhanced by methyl jasmonate in tobacco thin cell layers

    Full text link
    Adventitious roots (ARs) are induced by auxins. Jasmonic acid (JA) and methyl jasmonate (MeJA) are also plant growth regulators with many effects on development, but their role on ARs needs investigation. To this aim, we analyzed AR formation in tobacco thin cell layers (TCLs) cultured with 0.01–10 μM MeJA, either under root-inductive conditions, i.e., on medium containing 10 μM indole-3-butyric acid (IBA) and 0.1 μM kinetin, or without hormones. The explants were excised from the cultivars Samsun, Xanthii and Petite Havana, and from genotypes with altered AR-forming ability in response to auxin, namely the non-rooting rac mutant and the over-rooting Agrobacterium rhizogenes rolB transgenic line. Results show that NtRNR1 (G1/S) and Ntcyc29 (G2/M) gene activity, cell proliferation and meristemoid formation were stimulated in hormone-cultured TCLs by submicromolar MeJA concentrations. The meristemoids developed either into ARs and xylogenic nodules, or into xylogenic nodules only (rac TCLs). MeJA-induced meristemoid over-production characterized rolB TCLs. No rooting or xylogenesis occurred under hormone-free conditions, independently of MeJA and genotype. Endogenous JA progressively (days 1–4) increased in hormone-cultured TCLs in the absence of MeJA. JA levels were enhanced by 0.1 μM MeJA, on both days 1 and 4. Endogenous IBA was the only auxin detected, both in the free form and as IBA-glucose. Free IBA increased up to day 2, remaining constant thereafter (day 4). Its level was enhanced by 0.1 μM MeJA only on day 1, while IBA conjugation was not affected by MeJA. Taken together, these results show that an interplay between jasmonates and auxins regulates AR formation and xylogenesis in tobacco TCLs
    corecore