91 research outputs found

    Automated whole-cell patch-clamp electrophysiology of neurons in vivo

    Get PDF
    Whole-cell patch-clamp electrophysiology of neurons is a gold-standard technique for high-fidelity analysis of the biophysical mechanisms of neural computation and pathology, but it requires great skill to perform. We have developed a robot that automatically performs patch clamping in vivo, algorithmically detecting cells by analyzing the temporal sequence of electrode impedance changes. We demonstrate good yield, throughput and quality of automated intracellular recording in mouse cortex and hippocampus.National Institutes of Health (U.S.) (NIH EUREKA Award program (1R01NS075421))National Institutes of Health (U.S.) ((NIH) Director′s New Innovator Award (DP2OD002002)National Science Foundation (U.S.) ((NSF) CAREER award (CBET 1053233))New York Stem Cell Foundation (Robertson Neuroscience Award)Dr. Gerald Burnett and Marjorie BurnettNational Science Foundation (U.S.) (grant CISE 1110947)National Science Foundation (U.S.) (grant EHR 0965945)American Heart Association (10GRNT4430029

    The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity

    Get PDF
    The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence suggests that OD plasticity involves N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD). Here we report that the administration of a selective LTD antagonist prevented the ocular dominance shift during the critical period. The NMDAR co-agonist D-serine facilitated adult visual cortical LTD and the OD shift in short-term monocularly deprived (MD) adult mice. When combined with reverse suture, D-serine proved effective in restoring a contralaterally-dominated visual input pattern in long-term MD mice. This work suggests LTD as a key mechanism in both juvenile and adult ocular dominance plasticity, and D-serine as a potential therapeutic in human amblyopic subjects

    High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity

    Get PDF
    Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity

    HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24

    Get PDF
    Background: The mechanism behind the association between human leukocyte antigen (HLA) molecules and the rate of HIV-1 disease progression is still poorly understood. Recent data suggest that ‘‘protective’’ HLA molecules, i.e. those associated with a low HIV-1 viral load and relatively slow disease progression, tend to present epitopes from the Gag capsid protein. Although this suggests that preferential targeting of Gag delays disease progression, the apparent preference for Gag could also be a side-effect of the relatively high immunogenicity of the protein. Methods and Findings: To separate cause and effect, we predicted HIV-1 epitopes from the whole genome of HIV-1, and found that protective HLA alleles have a true preference for the p24 Gag protein, while non-protective HLA alleles preferentially target HIV-1 Nef. In line with this, we found a significant negative correlation between the predicted affinity of the best-binding p24 epitopes and the relative hazard of HIV-1 disease progression for a large number of HLA molecules. When the epitopes targeted by protective HLA alleles were mapped to the known p24 structure, we found that mutations in these epitopes are likely to disturb the p24 dimer structure, which is expected to severely reduce the fitness of the virus. Conclusions: Our results suggest that the intrinsic preference of different HLA molecules to present p24 peptides explains why some HLA molecules are more protective than others

    Alterations in the Properties of Neonatal Thalamocortical Synapses with Time in In Vitro Slices

    Get PDF
    New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation

    Disparate Associations of HLA Class I Markers with HIV-1 Acquisition and Control of Viremia in an African Population

    Get PDF
    BACKGROUND:Acquisition of human immunodeficiency virus type 1 (HIV-1) infection is mediated by a combination of characteristics of the infectious and the susceptible member of a transmission pair, including human behavioral and genetic factors, as well as viral fitness and tropism. Here we report on the impact of established and potential new HLA class I determinants of heterosexual HIV-1 acquisition in the HIV-1-exposed seronegative (HESN) partners of serodiscordant Zambian couples. METHODOLOGY/PRINCIPAL FINDINGS:We assessed the relationships of behavioral and clinically documented risk factors, index partner viral load, and host genetic markers to HIV-1 transmission among 568 cohabiting couples followed for at least nine months. We genotyped subjects for three classical HLA class I genes known to influence immune control of HIV-1 infection. From 1995 to December 2006, 240 HESNs seroconverted and 328 remained seronegative. In Cox proportional hazards models, HLA-A*68:02 and the B*42-C*17 haplotype in HESN partners were significantly and independently associated with faster HIV-1 acquisition (relative hazards = 1.57 and 1.55; p = 0.007 and 0.013, respectively) after controlling for other previously established contributing factors in the index partner (viral load and specific class I alleles), in the HESN partner (age, gender), or in the couple (behavioral and clinical risk score). Few if any previously implicated class I markers were associated here with the rate of acquiring infection. CONCLUSIONS/SIGNIFICANCE:A few HLA class I markers showed modest effects on acquisition of HIV-1 subtype C infection in HESN partners of discordant Zambian couples. However, the striking disparity between those few markers and the more numerous, different markers found to determine HIV-1 disease course makes it highly unlikely that, whatever the influence of class I variation on the rate of infection, the mechanism mediating that phenomenon is identical to that involved in disease control

    Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

    Get PDF
    The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link
    corecore