5 research outputs found

    Stable Genetic Effects on Symptoms of Alcohol Abuse and Dependence from Adolescence into Early Adulthood

    Get PDF
    Relatively little is known about how genetic influences on alcohol abuse and dependence (AAD) change with age. We examined the change in influence of genetic and environmental factors which explain symptoms of AAD from adolescence into early adulthood. Symptoms of AAD were assessed using the four AAD screening questions of the CAGE inventory. Data were obtained up to six times by self-report questionnaires for 8,398 twins from the Netherlands Twin Register aged between 15 and 32 years. Longitudinal genetic simplex modeling was performed with Mx. Results showed that shared environmental influences were present for age 15–17 (57%) and age 18–20 (18%). Unique environmental influences gained importance over time, contributing 15% of the variance at age 15–17 and 48% at age 30–32. At younger ages, unique environmental influences were largely age-specific, while at later ages, age-specific influences became less important. Genetic influences on AAD symptoms over age could be accounted for by one factor, with the relative influence of this factor differing across ages. Genetic influences increased from 28% at age 15–17 to 58% at age 21–23 and remained high in magnitude thereafter. These results are in line with a developmentally stable hypothesis that predicts that a single set of genetic risk factors acts on symptoms of AAD from adolescence into young adulthood

    Eating disorders: the current status of molecular genetic research

    Get PDF
    Anorexia nervosa (AN) and bulimia nervosa (BN) are complex disorders characterized by disordered eating behavior where the patient’s attitude towards weight and shape, as well as their perception of body shape, are disturbed. Formal genetic studies on twins and families suggested a substantial genetic influence for AN and BN. Candidate gene studies have initially focused on the serotonergic and other central neurotransmitter systems and on genes involved in body weight regulation. Hardly any of the positive findings achieved in these studies were unequivocally confirmed or substantiated in meta-analyses. This might be due to too small sample sizes and thus low power and/or the genes underlying eating disorders have not yet been analyzed. However, some studies that also used subphenotypes (e.g., restricting type of AN) led to more specific results; however, confirmation is as yet mostly lacking. Systematic genome-wide linkage scans based on families with at least two individuals with an eating disorder (AN or BN) revealed initial linkage regions on chromosomes 1, 3 and 4 (AN) and 10p (BN). Analyses on candidate genes in the chromosome 1 linkage region led to the (as yet unconfirmed) identification of certain variants associated with AN. Genome-wide association studies are under way and will presumably help to identify genes and pathways involved in these eating disorders. The elucidation of the molecular mechanisms underlying eating disorders might improve therapeutic approaches

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    corecore