364 research outputs found

    Genomic markers of panitumumab resistance including ERBB2/ HER2 in a phase II study of KRAS wild-type (wt) metastatic colorectal cancer (mCRC).

    Get PDF
    A prospective study was conducted to identify biomarkers associated with resistance to panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC). Patients with previously treated, codon 12/13 KRAS wt, mCRC were prospectively administered panitumumab 6 mg/kg IV q2weeks. Of 34 panitumumab-treated patients, 11 (32%) had progressive disease at 8 weeks and were classified as non-responders. A Nanostring nCounter-based assay identified a 5-gene expression signature (ERBB2, MLPH, IRX3, MYRF, and KLK6) associated with panitumumab resistance (P = 0.001). Immunohistochemistry and in situ hybridization determined that the HER2 (ERBB2) protein was overexpressed in 4/11 non-responding and 0/21 responding cases (P = 0.035). Two non-responding tumors had ERBB2 gene amplification only, and one demonstrated both ERBB2 amplification and mutation. A non-codon 12/13 KRAS mutation occurred in one panitumumab-resistant patient and was mutually exclusive with ERBB2/HER2 abnormalities. This study identifies a 5-gene signature associated with non-response to single agent panitumumab, including a subgroup of non-responders with evidence of aberrant ERBB2/HER2 signaling. KRAS wt tumors resistant to EGFRi may be identified by gene signature analysis, and the HER2 pathway plays an important role in resistance to therapy

    Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breast Tumors from the NCCTG (Alliance) N9831 Trial.

    Get PDF
    Background: Genomic data from human epidermal growth factor receptor 2-positive (HER2+) tumors were analyzed to assess the association between intrinsic subtype and clinical outcome in a large, well-annotated patient cohort. Methods: Samples from the NCCTG (Alliance) N9831 trial were analyzed using the Prosigna algorithm on the NanoString platform to define intrinsic subtype, risk of recurrence scores, and risk categories for 1392 HER2+ tumors. Subtypes were evaluated for recurrence-free survival (RFS) using Kaplan-Meier and Cox model analysis following adjuvant chemotherapy (n = 484) or chemotherapy plus trastuzumab (n = 908). All statistical tests were two-sided. Results: Patients with HER2+ tumors from N9831 were primarily scored as HER2-enriched (72.1%). These individuals received statistically significant benefit from trastuzumab (hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.52 to 0.89, P = .005), as did the patients (291 of 1392) with luminal-type tumors (HR = 0.52, 95% CI = 0.32 to 0.85, P = .01). Patients with basal-like tumors (97 of 1392) did not have statistically significantly better RFS when treated with trastuzumab and chemotherapy compared with chemotherapy alone (HR = 1.06, 95% CI = 0.53 to 2.13, P = .87). Conclusions: The majority of clinically defined HER2-positive tumors were classified as HER2-enriched or luminal using the Prosigna algorithm. Intrinsic subtype alone cannot replace conventional histopathological evaluation of HER2 status because many tumors that are classified as luminal A or luminal B will benefit from adjuvant trastuzumab if that subtype is accompanied by HER2 overexpression. However, among tumors that overexpress HER2, we speculate that assessment of intrinsic subtype may influence treatment, particularly with respect to evaluating alternative therapeutic approaches for that subset of HER2-positive tumors of the basal-like subtype

    Basal keratin expression in breast cancer by quantification of mRNA and by immunohistochemistry

    Get PDF
    Definitions of basal-like breast cancer phenotype vary, and microarray-based expression profiling analysis remains the gold standard for the identification of these tumors. Immunohistochemical identification of basal-like carcinomas is hindered with a fact, that on microarray level not all of them express basal-type cytokeratin 5/6, 14 and 17. We compared expression of cytokeratin 5, 14 and 17 in 115 patients with operable breast cancer estimated by real-time RT-PCR and immunohistochemistry

    Discovery and Preclinical Validation of Salivary Transcriptomic and Proteomic Biomarkers for the Non-Invasive Detection of Breast Cancer

    Get PDF
    A sensitive assay to identify biomarkers using non-invasively collected clinical specimens is ideal for breast cancer detection. While there are other studies showing disease biomarkers in saliva for breast cancer, our study tests the hypothesis that there are breast cancer discriminatory biomarkers in saliva using de novo discovery and validation approaches. This is the first study of this kind and no other study has engaged a de novo biomarker discovery approach in saliva for breast cancer detection. In this study, a case-control discovery and independent preclinical validations were conducted to evaluate the performance and translational utilities of salivary transcriptomic and proteomic biomarkers for breast cancer detection.Salivary transcriptomes and proteomes of 10 breast cancer patients and 10 matched controls were profiled using Affymetrix HG-U133-Plus-2.0 Array and two-dimensional difference gel electrophoresis (2D-DIGE), respectively. Preclinical validations were performed to evaluate the discovered biomarkers in an independent sample cohort of 30 breast cancer patients and 63 controls using RT-qPCR (transcriptomic biomarkers) and quantitative protein immunoblot (proteomic biomarkers). Transcriptomic and proteomic profiling revealed significant variations in salivary molecular biomarkers between breast cancer patients and matched controls. Eight mRNA biomarkers and one protein biomarker, which were not affected by the confounding factors, were pre-validated, yielding an accuracy of 92% (83% sensitive, 97% specific) on the preclinical validation sample set.Our findings support that transcriptomic and proteomic signatures in saliva can serve as biomarkers for the non-invasive detection of breast cancer. The salivary biomarkers possess discriminatory power for the detection of breast cancer, with high specificity and sensitivity, which paves the way for prediction model validation study followed by pivotal clinical validation

    Molecular subtype analysis determines the association of advanced breast cancer in Egypt with favorable biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic markers and molecular breast cancer subtypes reflect underlying biological tumor behavior and are important for patient management. Compared to Western countries, women in North Africa are less likely to be prognosticated and treated based on well-characterized markers such as the estrogen receptor (ER), progesterone receptor (PR) and Her2. We conducted this study to determine the prevalence of breast cancer molecular subtypes in the North African country of Egypt as a measure of underlying biological characteristics driving tumor manifestations.</p> <p>Methods</p> <p>To determine molecular subtypes we characterized over 200 tumor specimens obtained from Egypt by performing ER, PR, Her2, CK5/6, EGFR and Ki67 immunohistochemistry.</p> <p>Results</p> <p>Our study demonstrated that the Luminal A subtype, associated with favorable prognosis, was found in nearly 45% of cases examined. However, the basal-like subtype, associated with poor prognosis, was found in 11% of cases. These findings are in sharp contrast to other parts of Africa in which the basal-like subtype is over-represented.</p> <p>Conclusions</p> <p>Egyptians appear to have favorable underlying biology, albeit having advanced disease at diagnosis. These data suggest that Egyptians would largely profit from early detection of their disease. Intervention at the public health level, including education on the benefits of early detection is necessary and would likely have tremendous impact on breast cancer outcome in Egypt.</p

    The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer

    Get PDF
    INTRODUCTION. HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. METHODS. We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis. RESULTS. HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. CONCLUSIONS. HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.National Institutes of Health, National Cancer Institute (R01 CA116481, P50 CA 5820, P30 CA 82103, U54 CA 112970); Office of Science; U.S. Department of Energy Office of Science, Office of Biological & Environmental Research (DE-AC02-05CH11231
    • …
    corecore