46 research outputs found

    LAIR-1 and PECAM-1 function via the same signaling pathway to inhibit GPVI-mediated platelet activation

    Get PDF
    Background Inhibition of platelet responsiveness is important for controlling thrombosis. It is well established that platelet endothelial cell adhesion molecule-1 (PECAM-1) serves as a physiological negative regulator of platelet-collagen interactions. We recently demonstrated that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a negative regulator of platelet production and reactivity. It is however not known if LAIR-1 and PECAM-1 function in the same or different inhibitory pathways. ObjectivesIn this study, we investigated the role of LAIR-1 alongside PECAM-1 in megakaryocyte development and platelet production and determined the functional redundancy through characterization of a LAIR-1/PECAM-1 double knockout (DKO) mouse model. Methods LAIR-1 and PECAM-1 expression in megakaryocytes were evaluated by western blotting. Megakaryocyte ploidy and proplatelet formation were evaluated by flow cytometry and fluorescent microscopy. Platelet function and signalling were compared in wild-type, LAIR-1 −/− , PECAM-1 −/− and DKO mice using aggregometry, flow cytometry and western blotting. Thrombosis was evaluated using the FeCl 3 carotid artery model. ResultsWe show that LAIR-1/PECAM-1 DKO mice exhibit a 17% increase in platelet count. Bone marrow-derived megakaryocytes from all 3 mouse models had normal ploidy in vitro, suggesting that neither LAIR-1 nor PECAM-1 regulates megakaryocyte development. Furthermore, relative to wild-type platelets, platelets derived from LAIR-1, PECAM-1, and DKO mice were equally hyperresponsive to collagen in vitro, indicating that LAIR-1 and PECAM-1 participate in the same inhibitory pathway. Interestingly, DKO mice exhibited normal thrombus formation in vivo due to DKO mouse platelets lacking the enhanced Src family kinase activation previously shown in platelets from LAIR-1-deficient mice. Conclusion Findings from this study reveal that LAIR-1 and PECAM-1 act to inhibit GPVI-mediated platelet activation via the same signaling pathway. Mice lacking LAIR-1 and PECAM-1 do not however exhibit an increase in thrombus formation despite minor increase in platelet count and reactivity to collagen. This study adds to the growing evidence that immunoreceptor tyrosine-based inhibition motif–containing receptors are important regulators of platelet count and function

    LAIR-1 and PECAM-1 function via the same signaling pathway to inhibit GPVI-mediated platelet activation

    Get PDF
    Background Inhibition of platelet responsiveness is important for controlling thrombosis. It is well established that platelet endothelial cell adhesion molecule-1 (PECAM-1) serves as a physiological negative regulator of platelet-collagen interactions. We recently demonstrated that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a negative regulator of platelet production and reactivity. It is however not known if LAIR-1 and PECAM-1 function in the same or different inhibitory pathways. Objectives In this study, we investigated the role of LAIR-1 alongside PECAM-1 in megakaryocyte development and platelet production and determined the functional redundancy through characterization of a LAIR-1/PECAM-1 double knockout (DKO) mouse model. Methods LAIR-1 and PECAM-1 expression in megakaryocytes were evaluated by western blotting. Megakaryocyte ploidy and proplatelet formation were evaluated by flow cytometry and fluorescent microscopy. Platelet function and signalling were compared in wild-type, LAIR-1 −/− , PECAM-1 −/− and DKO mice using aggregometry, flow cytometry and western blotting. Thrombosis was evaluated using the FeCl 3 carotid artery model. Results We show that LAIR-1/PECAM-1 DKO mice exhibit a 17% increase in platelet count. Bone marrow-derived megakaryocytes from all 3 mouse models had normal ploidy in vitro, suggesting that neither LAIR-1 nor PECAM-1 regulates megakaryocyte development. Furthermore, relative to wild-type platelets, platelets derived from LAIR-1, PECAM-1, and DKO mice were equally hyperresponsive to collagen in vitro, indicating that LAIR-1 and PECAM-1 participate in the same inhibitory pathway. Interestingly, DKO mice exhibited normal thrombus formation in vivo due to DKO mouse platelets lacking the enhanced Src family kinase activation previously shown in platelets from LAIR-1-deficient mice. Conclusion Findings from this study reveal that LAIR-1 and PECAM-1 act to inhibit GPVI-mediated platelet activation via the same signaling pathway. Mice lacking LAIR-1 and PECAM-1 do not however exhibit an increase in thrombus formation despite minor increase in platelet count and reactivity to collagen. This study adds to the growing evidence that immunoreceptor tyrosine-based inhibition motif–containing receptors are important regulators of platelet count and function

    Mice lacking the inhibitory collagen receptor LAIR-1 exhibit a mild thrombocytosis and hyperactive platelets

    Get PDF
    Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors. </jats:sec

    The Gp1ba-Cre transgenic mouse::A new model to delineate platelet and leukocyte functions

    Get PDF
    Conditional knockout (KO) mouse models are invaluable for elucidating the physiological roles of platelets. The Platelet factor 4-Cre recombinase (Pf4-Cre) transgenic mouse is the current model of choice for generating megakaryocyte/platelet-specific KO mice. Platelets and leukocytes work closely together in a wide range of disease settings, yet the specific contribution of platelets to these processes remains unclear. This is partially a result of the Pf4-Cre transgene being expressed in a variety of leukocyte populations. To overcome this issue, we developed a Gp1ba-Cre transgenic mouse strain in which Cre expression is driven by the endogenous Gp1ba locus. By crossing Gp1ba-Cre and Pf4-Cre mice to the mT/mG dual-fluorescence reporter mouse and performing a head-to-head comparison, we demonstrate more stringent megakaryocyte lineage-specific expression of the Gp1ba-Cre transgene. Broader tissue expression was observed with the Pf4-Cre transgene, leading to recombination in many hematopoietic lineages, including monocytes, macrophages, granulocytes, and dendritic and B and T cells. Direct comparison of phenotypes of Csk, Shp1, or CD148 conditional KO mice generated using either the Gp1ba-Cre or Pf4-Cre strains revealed similar platelet phenotypes. However, additional inflammatory and immunological anomalies were observed in Pf4-Cre-generated KO mice as a result of nonspecific deletion in other hematopoietic lineages. By excluding leukocyte contributions to phenotypes, the Gp1ba-Cre mouse will advance our understanding of the role of platelets in inflammation and other pathophysiological processes in which platelet-leukocyte interactions are involved

    The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis

    Get PDF
    Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug targe
    corecore