10,174 research outputs found
Generalized Gross--Perry--Sorkin--Like Solitons
In this paper, we present a new solution for the effective theory of
Maxwell--Einstein--Dilaton, Low energy string and Kaluza--Klein theories, which
contains among other solutions the well known Kaluza--Klein monopole solution
of Gross--Perry--Sorkin as special case. We show also the magnetic and electric
dipole solutions contained in the general one.Comment: 10 latex pages, no figures. To appear in Class. Quant. Gravity
Social Requirements for Virtual Organization Breeding Environments
The creation of Virtual Breeding Environments (VBE) is a topic which has
received too little attention: in most former works, the existence of the VBE
is either assumed, or is considered as the result of the voluntary,
participatory gathering of a set of candidate companies. In this paper, the
creation of a VBE by a third authority is considered: chambers of commerce, as
organizations whose goal is to promote and facilitate business interests and
activity in the community, could be good candidates for exogenous VBE creators.
During VBE planning, there is a need to specify social requirements for the
VBE. In this paper, SNA metrics are proposed as a way for a VBE planner to
express social requirements for a VBE to be created. Additionally, a set of
social requirements for VO planners, VO brokers, and VBE members are proposed.Comment: 10 pages, 2 figure
On the Space Time of a Galaxy
We present an exact solution of the averaged Einstein's field equations in
the presence of two real scalar fields and a component of dust with spherical
symmetry. We suggest that the space-time found provides the characteristics
required by a galactic model that could explain the supermassive central object
and the dark matter halo at once, since one of the fields constitutes a central
oscillaton surrounded by the dust and the other scalar field distributes far
from the coordinate center and can be interpreted as a halo. We show the
behavior of the rotation curves all along the background. Thus, the solution
could be a first approximation of a ``long exposition photograph'' of a galaxy.Comment: 8 pages REVTeX, 11 eps figure
Generation of Closed Timelike Curves with Rotating Superconductors
The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced
from the gravitomagnetic London moment in rotating superconductors. It is shown
that theoretically it is possible to generate Closed Timelike Curves (CTC) with
rotating SCRs. The possibility to use these CTC's to travel in time as
initially idealized by G\"{o}del is investigated. It is shown however, that
from a technology and experimental point of view these ideas are impossible to
implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit
Beating of Friedel oscillations induced by spin-orbit interaction
By exploiting our recently derived exact formula for the Lindhard
polarization function in the presence of Bychkov-Rashba (BR) and Dresselhaus
(D) spin-orbit interaction (SOI), we show that the interplay of different SOI
mechanisms induces highly anisotropic modifications of the static dielectric
function. We find that under certain circumstances the polarization function
exhibits doubly-singular behavior, which leads to an intriguing novel
phenomenon, beating of Friedel oscillations. This effect is a general feature
of systems with BR+D SOI and should be observed in structures with a
sufficiently strong SOI.Comment: 3 figure
Oscillatons revisited
In this paper, we study some interesting properties of a spherically
symmetric oscillating soliton star made of a real time-dependent scalar field
which is called an oscillaton. The known final configuration of an oscillaton
consists of a stationary stage in which the scalar field and the metric
coefficients oscillate in time if the scalar potential is quadratic. The
differential equations that arise in the simplest approximation, that of
coherent scalar oscillations, are presented for a quadratic scalar potential.
This allows us to take a closer look at the interesting properties of these
oscillating objects. The leading terms of the solutions considering a quartic
and a cosh scalar potentials are worked in the so called stationary limit
procedure. This procedure reveals the form in which oscillatons and boson stars
may be related and useful information about oscillatons is obtained from the
known results of boson stars. Oscillatons could compete with boson stars as
interesting astrophysical objects, since they would be predicted by scalar
field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version
published in Classical and Quantum Gravit
Quintessence and Scalar Dark Matter in the Universe
Continuing with previous works, we present a cosmological model in which dark
matter and dark energy are modeled by scalar fields and ,
respectively, endowed with the scalar potentials and . This model contains 95% of
scalar field. We obtain that the scalar dark matter mass is The solution obtained allows us to recover the success of the
standard CDM. The implications on the formation of structure are reviewed. We
obtain that the minimal cutoff radio for this model is Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references
updated. To appear in Classical and Quantum Gravity as a Letter to the
Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI
Characterization of digital dispersive spectrometers by low coherence interferometry
We propose a procedure to determine the spectral response of digital dispersive spectrometers without previous knowledge of any parameter of the system. The method consists of applying the Fourier transform spectroscopy technique to each pixel of the detection plane, a CCD camera, to obtain its individual spectral response. From this simple procedure, the system-point spread function and the effect of the finite pixel width are taken into account giving rise to a response matrix that fully characterizes the spectrometer. Using the response matrix information we find the resolving power of a given spectrometer, predict in advance its response to any virtual input spectrum and improve numerically the spectrometer's resolution. We consider that the presented approach could be useful in most spectroscopic branches such as in computational spectroscopy, optical coherence tomography, hyperspectral imaging, spectral interferometry and analytical chemistry, among others.Fil: Martínez Matos, Ó.. Universidad Complutense de Madrid; EspañaFil: Rickenstorff, C.. Universidad Complutense de Madrid; EspañaFil: Zamora, S.. Universidad Complutense de Madrid; EspañaFil: Izquierdo, J. G.. Universidad Complutense de Madrid; EspañaFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentin
Revivals, collapses and magnetic-pulse generation in quantum rings
Using a microscopic theory based on the density matrix formalism we
investigate quantum revivals and collapses of the charge polarization and
charge current dynamics in mesoscopic rings driven by short asymmetric
electromagnetic pulses. The collapsed state is utilized for sub-picosecond
switching of the current and associated magnetization, enabling thus the
generation of pulsed magnetic fields with a tunable time structure and shape
asymmetry which provides a new tool to study ultrafast spin-dynamics and
ratchet-based effects.Comment: 4 pages, 2 figure
An Alternative Interpretation for the Moduli Fields of the Cosmology Associated to Type IIB Supergravity with Fluxes
We start with a particular cosmological model derived from type IIB
supergravity theory with fluxes, where usually the dilaton is interpreted as a
Quintessence field. Instead of that, in this letter we interpret the dilaton as
the dark matter of the universe. With this alternative interpretation we find
that in this supergravity model gives a similar evolution and structure
formation of the universe compared with the CDM model in the linear
regime of fluctuations of the structure formation. Some free parameters of the
theory are fixed using the present cosmological observations. In the non-linear
regimen there are some differences between the type IIB supergravity theory
with the traditional CDM paradigm. The supergravity theory predicts the
formation of galaxies earlier than the CDM and there is no density cusp in the
center of galaxies. These differences can distinguish both models and can give
a distinctive feature to the phenomenology of the cosmology coming from
superstring theory with fluxes.Comment: 7 pages, 5 figures, references added, minor modifications, typos
corrected. Version accepted for publication in IJMP
- …