22 research outputs found
Pressure-induced phase transition of Bi2Te3 into the bcc structure
The pressure-induced phase transition of bismuth telluride, Bi2Te3, has been
studied by synchrotron x-ray diffraction measurements at room temperature using
a diamond-anvil cell (DAC) with loading pressures up to 29.8 GPa. We found a
high-pressure body-centered cubic (bcc) phase in Bi2Te3 at 25.2 GPa, which is
denoted as phase IV, and this phase apperars above 14.5 GPa. Upon releasing the
pressure from 29.8 GPa, the diffraction pattern changes with pressure
hysteresis. The original rhombohedral phase is recovered at 2.43 GPa. The bcc
structure can explain the phase IV peaks. We assumed that the structural model
of phase IV is analogous to a substitutional binary alloy; the Bi and Te atoms
are distributed in the bcc-lattice sites with space group Im-3m. The results of
Rietveld analysis based on this model agree well with both the experimental
data and calculated results. Therefore, the structure of phase IV in Bi2Te3 can
be explained by a solid solution with a bcc lattice in the Bi-Te (60 atomic%
tellurium) binary system.Comment: 12 pages, 5 figure
An Excellent Monitoring System for Surface Ubiquitination-Induced Internalization in Mammals
Background. At present, it is difficult to visualize the internalization of surface receptors induced by ubiquitination that is taken place at the plasma membrane in mammals. This problem makes it difficult to reveal molecular basis for ubiquitinationmediated internalization in mammals. Methodology/Principle Findings. In order to overcome it, we have generated T-REx-c-MIR, a novel mammalian Tet-on B cell line using a constitutively active E3 ubiquitin ligase, c-MIR, and its artificial target molecule. By applying the surface biotinylation method to T-REx-c-MIR, we succeeded to monitor the fate of surface target molecules after initiation of ubiquitination process by doxycycline (Dox)-induced c-MIR expression. Target molecules that preexisted at the plasma membrane before induction of c-MIR expression were oligo-ubiquitinated and degraded by Dox-induced c-MIR expression. Dox-induced c-MIR expression initiated rapid internalization of surface target molecules, and blockage of the internalization induced the accumulation of the surface target molecules that were newly ubiquitinated by c-MIR. Inhibition of the surface ubiquitination by down-regulating ubiquitin conjugating enzyme E2 impaired the internalization of target molecules. Finally, a complex of c-MIR and target molecule was detected at the plasma membrane. Conclusions/ Significances. These results demonstrate that in T-REx-c-MIR, surface target molecule is ubiquitinated at the plasma membrane and followed by being internalized from the plasma membrane. Thus, T-REx-c-MIR is a useful experimental tool t
CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10–driven MARCH1-mediated ubiquitination and degradation
By opposing IL-10–driven, MARCH1-mediated ubiquitination and degradation of MHC class II, CD83 may boost the immunogenicity of dendritic cells
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
Nontoxic Shiga Toxin Derivatives from Escherichia coli Possess Adjuvant Activity for the Augmentation of Antigen-Specific Immune Responses via Dendritic Cell Activation
Shiga toxin (Stx) derivatives, such as the Stx1 B subunit (StxB1), which mediates toxin binding to the membrane, and mutant Stx1 (mStx1), which is a nontoxic doubly mutated Stx1 harboring amino acid substitutions in the A subunit, possess adjuvant activity via the activation of dendritic cells (DCs). Our results showed that StxB1 and mStx1, but not native Stx1 (nStx1), resulted in enhanced expression of CD86, CD40, and major histocompatibility complex (MHC) class II molecules and, to some extent, also enhanced the expression of CD80 on bone marrow-derived DCs. StxB1-treated DCs exhibited an increase in tumor necrosis factor alpha and interleukin-12 (IL-12) production, a stimulation of DO11.10 T-cell proliferation, and the production of both Th1 and Th2 cytokines, including gamma interferon (IFN-γ), IL-4, IL-5, IL-6, and IL-10. When mice were given StxB1 subcutaneously, the levels of CD80, CD86, and CD40, as well as MHC class II expression by splenic DCs, were enhanced. The subcutaneous immunization of mice with ovalbumin (OVA) plus mStx1 or StxB1 induced high titers of OVA-specific immunoglobulin M (IgM), IgG1, and IgG2a in serum. OVA-specific CD4(+) T cells isolated from mice immunized with OVA plus mStx1 or StxB1 produced IFN-γ, IL-4, IL-5, IL-6, and IL-10, indicating that mStx1 and StxB1 elicit both Th1- and Th2-type responses. Importantly, mice immunized subcutaneously with tetanus toxoid plus mStx1 or StxB1 were protected from a lethal challenge with tetanus toxin. These results suggest that nontoxic Stx derivatives, including both StxB1 and mStx1, could be effective adjuvants for the induction of mixed Th-type CD4(+) T-cell-mediated antigen-specific antibody responses via the activation of DCs