18 research outputs found

    A Pilot Study on Oxidative Stress during the Recovery Phase in Critical COVID-19 Patients in a Rehabilitation Facility: Potential Utility of the PAOT ® Technology for Assessing Total Anti-Oxidative Capacity

    Full text link
    peer reviewedBackground: Oxidative stress (OS) could cause various COVID-19 complications. Recently, we have developed the Pouvoir AntiOxydant Total (PAOT®) technology for reflecting the total antioxidant capacity (TAC) of biological samples. We aimed to investigate systemic oxidative stress status (OSS) and to evaluate the utility of PAOT®for assessing TAC during the recovery phase in critical COVID-19 patients in a rehabilitation facility. Materials and Methods: In a total of 12 critical COVID-19 patients in rehabilitation, 19 plasma OSS biomarkers were measured: antioxidants, TAC, trace elements, oxidative damage to lipids, and inflammatory biomarkers. TAC level was measured in plasma, saliva, skin, and urine, using PAOT and expressed as PAOT-Plasma, -Saliva, -Skin, and -Urine scores, respectively. Plasma OSS biomarker levels were compared with levels from previous studies on hospitalized COVID-19 patients and with the reference population. Correlations between four PAOT scores and plasma OSS biomarker levels were analyzed. Results: During the recovery phase, plasma levels in antioxidants ( -tocopherol,  -carotene, total glutathione, vitamin C and thiol proteins) were significantly lower than reference intervals, whereas total hydroperoxides and myeloperoxidase (a marker of inflammation) were significantly higher. Copper negatively correlated with total hydroperoxides (r = 0.95, p = 0.001). A similar, deeply modified OSS was already observed in COVID-19 patients hospitalized in an intensive care unit. TAC evaluated in saliva, urine, and skin correlated negatively with copper and with plasma total hydroperoxides. To conclude, the systemic OSS, determined using a large number of biomarkers, was always significantly increased in cured COVID-19 patients during their recovery phase. The less costly evaluation of TAC using an electrochemical method could potentially represent a good alternative to the individual analysis of biomarkers linked to pro-oxidants

    Innovations in physical and rehabilitation medicine

    Full text link
    peer reviewedAu cours de la dernière décennie, la Médecine Physique et Réadaptation (MPR) est une spécialité médicale qui a fortement évolué dans les différents domaines qui la concernent : de la prise en charge des lombalgies et lombosciatalgies ou encore de l’ostéoporose de manière pluridisciplinaire, en passant par l’utilisation des nouvelles technologies en rééducation neuro-locomotrice et de la robotisation en rééducation, chez les patients amputés par exemple, le développement de la médecine à vocation régénérative et la prévention en traumatologie du sport et, enfin, les progrès des techniques d’électrophysiologie pour le diagnostic des neuropathies à petites fibres. Ces différentes avancées seront abordées dans cet article.Over the last decade, Physical and Rehabilitation Medicine (PRM) is a medical specialty that has evolved considerably in the various fields that concern it : from the management of low back pain and lumbosciatalgia or osteoporosis in a multidisciplinary manner, through the use of new technologies in neuro-locomotor rehabilitation and robotisation in amputee patients for example, the development of regenerative medicine and prevention in sports traumatology and, finally, the progress of electrophysiology techniques for the diagnosis of small-fibre neuropathies. These various advances will be discussed in this article
    corecore