92 research outputs found
Nonlinear and linear timescales near kinetic scales in solar wind turbulence
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory—which assumes constant parameters to calculate the associated kinetic rates—may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior
Magnetic Reconnection In Two-Dimensional Magnetohydrodynamic Turbulence
The nonlinear dynamics of magnetic reconnection in turbulence is investigated through direct numerical simulations of decaying, incompressible, two-dimensional magnetohydrodynamics. Recently, it was shown by Servidio [Phys. Rev. Lett. 102, 115003 (2009)] that in fully developed turbulence complex processes of reconnection occur locally. Here, the main statistical features of these multiscale reconnection events are further described, providing details on the methodology. It is found that is possible to describe the reconnection process in turbulence as a generalized local Sweet-Parker process in which the parameters are locally controlled by the turbulence cascade, thus providing a step toward reconciling classical turbulence analysis with reconnection theory. This general description of reconnection may be useful for laboratory and space plasmas, where the presence of turbulence plays a crucial role. © 2010 American Institute of Physics.Fil: Servidio, S.. Universita Della Calabria; Italia. Bartol Research Institute; Estados UnidosFil: Matthaeus, W.H.. Bartol Research Institute; Estados UnidosFil: Shay, M.A.. Bartol Research Institute; Estados UnidosFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cassak, P.A.. West Virginia University; Estados UnidosFil: Wan, M.. Bartol Research Institute; Estados Unido
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Realistic astrophysical environments are turbulent due to the extremely high
Reynolds numbers. Therefore, the theories of reconnection intended for
describing astrophysical reconnection should not ignore the effects of
turbulence on magnetic reconnection. Turbulence is known to change the nature
of many physical processes dramatically and in this review we claim that
magnetic reconnection is not an exception. We stress that not only
astrophysical turbulence is ubiquitous, but also magnetic reconnection itself
induces turbulence. Thus turbulence must be accounted for in any realistic
astrophysical reconnection setup. We argue that due to the similarities of MHD
turbulence in relativistic and non-relativistic cases the theory of magnetic
reconnection developed for the non-relativistic case can be extended to the
relativistic case and we provide numerical simulations that support this
conjecture. We also provide quantitative comparisons of the theoretical
predictions and results of numerical experiments, including the situations when
turbulent reconnection is self-driven, i.e. the turbulence in the system is
generated by the reconnection process itself. We show how turbulent
reconnection entails the violation of magnetic flux freezing, the conclusion
that has really far reaching consequences for many realistically turbulent
astrophysical environments. In addition, we consider observational testing of
turbulent reconnection as well as numerous implications of the theory. The
former includes the Sun and solar wind reconnection, while the latter include
the process of reconnection diffusion induced by turbulent reconnection, the
acceleration of energetic particles, bursts of turbulent reconnection related
to black hole sources as well as gamma ray bursts. Finally, we explain why
turbulent reconnection cannot be explained by turbulent resistivity or derived
through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection -
Concepts and Applications", editors W. Gonzalez, E. N. Parke
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
The Diffusion Region in Collisionless Magnetic Reconnection
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed
- …