1,158 research outputs found
The space between stress and reaction: A three-way interaction of active coping, psychological stress, and applied mindfulness in the prediction of sustainable resilience
Amid a global pandemic, data was collected to explore the extent to which resilience practices (active coping and applied mindfulness) under varying degrees of stress levels can promote sustainable resilience, defined as the ability to move through challenges in a way that leads to increased positive adaptation to meet present and future challenges. Results did not support the proposed three-way interaction; however, post-hoc analyses indicated that active coping (r = .316) and applied mindfulness (r = .250) were independently predictive of sustained resilience and, when combined, predicted approximately 20 percent (R2 = .203) of sustained resilience one month later. Furthermore, the results suggest a significant quadratic two-way moderation between mindfulness and sustained resilience at different stress levels suggesting that at high stress levels, moderate levels of mindfulness are most predictive of resilience. Implications for theory, practice, and future research are discussed
Imaging Pauli repulsion in scanning tunneling microscopy
A scanning tunneling microscope (STM) has been equipped with a nanoscale
force sensor and signal transducer composed of a single D2 molecule that is
confined in the STM junction. The uncalibrated sensor is used to obtain
ultra-high geometric image resolution of a complex organic molecule adsorbed on
a noble metal surface. By means of conductance-distance spectroscopy and
corresponding density functional calculations the mechanism of the
sensor/transducer is identified. It probes the short-range Pauli repulsion and
converts this signal into variations of the junction conductance.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
Quasiparticle energies for large molecules: a tight-binding GW approach
We present a tight-binding based GW approach for the calculation of
quasiparticle energy levels in confined systems such as molecules. Key
quantities in the GW formalism like the microscopic dielectric function or the
screened Coulomb interaction are expressed in a minimal basis of spherically
averaged atomic orbitals. All necessary integrals are either precalculated or
approximated without resorting to empirical data. The method is validated
against first principles results for benzene and anthracene, where good
agreement is found for levels close to the frontier orbitals. Further, the size
dependence of the quasiparticle gap is studied for conformers of the polyacenes
() up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.
Ab initio study of a mechanically gated molecule: From weak to strong correlation
The electronic spectrum of a chemically contacted molecule in the junction of
a scanning tunneling microscope can be modified by tip retraction. We analyze
this effect by a combination of density functional, many-body perturbation and
numerical renormalization group theory, taking into account both the
non-locality and the dynamics of electronic correlation. Our findings, in
particular the evolution from a broad quasiparticle resonance below to a narrow
Kondo resonance at the Fermi energy, correspond to the experimental
observations.Comment: 4 pages, 3 figure
Electrical transport through a mechanically gated molecular wire
A surface-adsorbed molecule is contacted with the tip of a scanning tunneling
microscope (STM) at a pre-defined atom. On tip retraction, the molecule is
peeled off the surface. During this experiment, a two-dimensional differential
conductance map is measured on the plane spanned by the bias voltage and the
tip-surface distance. The conductance map demonstrates that tip retraction
leads to mechanical gating of the molecular wire in the STM junction. The
experiments are compared with a detailed ab initio simulation. We find that
density functional theory (DFT) in the local density approximation (LDA)
describes the tip-molecule contact formation and the geometry of the molecular
junction throughout the peeling process with predictive power. However, a
DFT-LDA-based transport simulation following the non-equilibrium Green's
functions (NEGF) formalism fails to describe the behavior of the differential
conductance as found in experiment. Further analysis reveals that this failure
is due to the mean-field description of electron correlation in the local
density approximation. The results presented here are expected to be of general
validity and show that, for a wide range of common wire configurations,
simulations which go beyond the mean-field level are required to accurately
describe current conduction through molecules. Finally, the results of the
present study illustrate that well-controlled experiments and concurrent ab
initio transport simulations that systematically sample a large configuration
space of molecule-electrode couplings allow the unambiguous identification of
correlation signatures in experiment.Comment: 31 pages, 10 figure
Structural relaxations in electronically excited poly(para-phenylene)
Structural relaxations in electronically excited poly(para-phenylene) are
studied using many-body perturbation theory and density-functional-theory
methods. A sophisticated description of the electron-hole interaction is
required to describe the energies of the excitonic states, but we show that the
structural relaxations associated with exciton formation can be obtained quite
accurately within a constrained density-functional-theory approach. We find
that the structural relaxations in the low-energy excitonic states extend over
about 8 monomers, leading to an energy reduction of 0.22 eV and a Stokes shift
of 0.40 eV.Comment: 4 pages, 3 figure
All-inorganic core-shell silica-titania mesoporous colloidal nanoparticles showing orthogonal functionality
Colloidal mesoporous silica (CMS) nanoparticles with a thin titania-enriched outer shell showing a spatially resolved functionality were synthesized by a delayed co-condensation approach. The titaniashell can serve as a selective nucleation site for the growth of nanocrystalline anatase clusters. These fully inorganic pure silica-core titania-enriched shell mesoporous nanoparticles show orthogonal functionality, demonstrated through the selective adsorption of a carboxylate-containing ruthenium N3-dye. UV-Vis and fluorescence spectroscopy indicate the strong interaction of the N3-dye with the titania-phase at the outer shell of the CMS nanoparticles. In particular, this interaction and thus the selective functionalization are greatly enhanced when anatase nanocrystallites are nucleated at the titania-enriched shell surface
Thick titania films with hierarchical porosity assembled from ultrasmall titania nanoparticles as photoanodes for dye-sensitized solar cells
Thin mesoporous titania films prepared by surfactant templating feature some of the highest light conversion efficiencies per thickness ratios as anodes in dye-sensitized solar cells (DSCs). However, the fabrication of thicker films required for sufficient light absorption is very challenging using this approach, often resulting in cracking and delamination of the films. Here we present a simple and scalable method to prepare thick mesoporous titania photoanodes via a surfactant-directed assembly of crystalline ultrasmall TiO2 nanoparticles in combination with phase separation due to ethyl cellulose added to the coating solutions. Along with increasing film thickness, the ethyl cellulose introduces an interpenetrating macropore network into the films, leading to the formation of hierarchical porous films with bimodal porosity, with the smaller mesopores resulting from the structure-directing agent, Pluronic F127. In this way, films of up to 2 mm per layer without delamination can be produced, exhibiting a high surface area of 130 m(2) g(-1), about twice the value of films based on standard TiO2 nanoparticle paste. The preparation of multilayer films by a sequential spin-coating and calcination procedure enables the production of films with an overall thickness of up to 10 mm in only 5 steps, which showed high efficiencies of 7.7% in dye-sensitized solar cells
Dynamical bi-stability of single-molecule junctions: A combined experimental/theoretical study of PTCDA on Ag(111)
The dynamics of a molecular junction consisting of a PTCDA molecule between
the tip of a scanning tunneling microscope and a Ag(111) surface have been
investigated experimentally and theoretically. Repeated switching of a PTCDA
molecule between two conductance states is studied by low-temperature scanning
tunneling microscopy for the first time, and is found to be dependent on the
tip-substrate distance and the applied bias. Using a minimal model Hamiltonian
approach combined with density-functional calculations, the switching is shown
to be related to the scattering of electrons tunneling through the junction,
which progressively excite the relevant chemical bond. Depending on the
direction in which the molecule switches, different molecular orbitals are
shown to dominate the transport and thus the vibrational heating process. This
in turn can dramatically affect the switching rate, leading to non-monotonic
behavior with respect to bias under certain conditions. In this work, rather
than simply assuming a constant density of states as in previous works, it was
modeled by Lorentzians. This allows for the successful description of this
non-monotonic behavior of the switching rate, thus demonstrating the importance
of modeling the density of states realistically.Comment: 20 pages, 6 figures, 1 tabl
Ab-initio calculation of optical absorption in semiconductors: A density-matrix description
We show how to describe Coulomb renormalization effects and dielectric
screening in semiconductors and semiconductor nanostructures within a
first-principles density-matrix description. Those dynamic variables and
approximation schemes which are required for a proper description of dielectric
screening are identified. It is shown that within the random-phase
approximation the direct Coulomb interactions become screened, with static
screening being a good approximation, whereas the electron-hole exchange
interactions remain unscreened. Differences and similarities of our results
with those obtained from a corresponding GW approximation and Bethe-Salpeter
equation Green's function analysis are discussed.Comment: 10 pages, to be published in Physical Review
- …