3,067 research outputs found

    Spinodal instabilities within BUU approach

    Get PDF
    Using a recently developed method for the inclusion of fluctuation in the BUU dynamics, we study the self-consistent propagation of inherent thermal noise of unstable nuclear matter. The large time behaviour of the evolving system exhibits synergism between fluctuation and non-linearities in a universal manner which manifest in the appearance of macroscopic structure in the average description.Comment: 12 pages Revtex. Two figures, uuencoded, are enclosed in a separate fil

    Isospin Transport at Fermi Energies

    Full text link
    In this paper we investigate isospin transport mechanisms in semi-peripheral collisions at Fermi energies. The effects of the formation of a low density region (neck) between the two reaction partners and of pre-equilibrium emission on the dynamics of isospin equilibration are carefully analyzed. We clearly identify two main contributions to the isospin transport: isospin diffusion due to the N/ZN/Z ratio and isospin drift due to the density gradients. Both effects are sensitive to the symmetry part of the nuclear Equation of State (EOS), in particular to the value and slope around saturation density.Comment: 6 pages, 6 figures, revtex4-twocolumn

    Coulomb effects on growth of instabilities in asymmetric nuclear matter

    Get PDF
    We study the effects of the Coulomb interaction on the growth of unstable modes in asymmetric nuclear matter. In order to compare with previous calculations we use a semiclassical approach based on the linearized Vlasov equation. Moreover, a quantum calculation is performed within the R.P.A.. The Coulomb effects are a slowing down of the growth and the occurrence of a minimal wave vector for the onset of the instabilities. The quantum corrections cause a further decrease of the growth rates.Comment: 10 pages, revtex, 4 ps figures, to appear in Phys. Rev. C e-mail: [email protected], [email protected]

    Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates

    Full text link
    We consider the lightly doped cuprates Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} and La2x_{2-x}Srx_xCuO4_4 (with x=0.02x=0.02,0.04), where the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe (or, more generically, charge-density wave) phase, which sets in at higher doping. We phenomenologically assume a quantum critical character for the longitudinal and transverse nematic, and for the charge-ordering fluctuations, and investigate the effects of these fluctuations in Raman spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well for the anomalous Raman absorption observed in these systems in the B2gB_{2g} channel, while the absence of such effect in the B1gB_{1g} channel may be due to the overall suppression of Raman response at low frequencies, associated with the pseudogap. While in Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} the low-frequency lineshape is fully accounted by longitudinal nematic collective modes alone, in La2x_{2-x}Srx_xCuO4_4 also charge-ordering modes with finite characteristic wavevector are needed to reproduce the shoulders observed in the Raman response. This different involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state at very low doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201

    Nuclear fragmentation: sampling the instabilities of binary systems

    Get PDF
    We derive stability conditions of Asymmetric Nuclear Matter (ANMANM) and discuss the relation to mechanical and chemical instabilities of general two-component systems. We show that the chemical instability may appear as an instability of the system against isoscalar-like rather than isovector-like fluctuations if the interaction between the two constituent species has an attractive character as in the case of ANMANM. This leads to a new kind of liquid-gas phase transition, of interest for fragmentation experiments with radioactive beams.Comment: 4 pages (LATEX), 3 Postscript figures, improved version, added reference

    IMF isotopic properties in semi-peripheral collisions at Fermi energies

    Full text link
    We study the neutron and proton dynamical behavior along the fragmentation path in semi-peripheral collisions: 58Fe+58Fe (charge asymmetric, N/Z = 1.23) and 58Ni+58Ni (charge symmetric, N/Z = 1.07), at 47 AMeV. We observe that isospin dynamics processes take place also in the charge-symmetric system 58Ni+58Ni, that may produce more asymmetric fragments. A neutron enrichment of the neck fragments is observed, resulting from the interplay between pre-equilibrium emission and the phenomenon of "isospin-migration". Both effects depend on the EoS (Equation of State) symmetry term. This point is illustrated by comparing the results obtained with two different choices of the symmetry energy density dependence. New correlation observables are suggested, to study the reaction mechanism and the isospin dynamics.Comment: 5 pages, 8 figures, Revtex4 Latex Styl

    Low density instability in a nuclear Fermi liquid drop

    Full text link
    The instability of a Fermi-liquid drop with respect to bulk density distortions is considered. It is shown that the presence of the surface strongly reduces the growth rate of the bulk instability of the finite Fermi-liquid drop because of the anomalous dispersion term in the dispersion relation. The instability growth rate is reduced due to the Fermi surface distortions and the relaxation processes. The dependence of the bulk instability on the multipolarity of the particle density fluctuations is demonstrated for two nuclei 40Ca^{40}Ca and 208Pb^{208}Pb.Comment: 12 pages, latex, 3 ps-figures, submitted to Phys. Rev.

    Fast nucleon emission as a probe of the isospin momentum dependence

    Full text link
    In this article we investigate the structure of the non-local part of the symmetry term, that leads to a splitting of the effective masses of protons and neutrons in asymmetric matter. Based on microscopic transport simulations we suggest some rather sensitive observables in collisions of neutron-rich (unstable) ions at intermediate (RIARIA) energies. In particular we focus the attention on pre-equilibrium nucleon emissions. We discuss interesting correlations between the N/Z content of the fast emitted particles and their rapidity or transverse momentum, that show a nice dependence on the prescription used for the effective mass splitting.Comment: 5 pages, 6 figures, revtex
    corecore