31 research outputs found

    Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Glial Activation

    Get PDF
    Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase 3 family, is activated by oxidative stress. The death-signaling pathway mediated by ASK1 is inhibited by DJ-1, which is linked to recessively inherited Parkinson's disease (PD). Considering that DJ-1 deficiency exacerbates the toxicity of the mitochondrial complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we sought to investigate the direct role and mechanism of ASK1 in MPTP-induced dopamine neuron toxicity. In the present study, we found that MPTP administration to wild-type mice activates ASK1 in the midbrain. In ASK1 null mice, MPTP-induced motor impairment was less profound, and striatal dopamine content and nigral dopamine neuron counts were relatively preserved compared to wild-type littermates. Further, microglia and astrocyte activation seen in wild-type mice challenged with MPTP was markedly attenuated in ASK1−/− mice. These data suggest that ASK1 is a key player in MPTP-induced glial activation linking oxidative stress with neuroinflammation, two well recognized pathogenetic factors in PD. These findings demonstrate that ASK1 is an important effector of MPTP-induced toxicity and suggest that inhibiting this kinase is a plausible therapeutic strategy for protecting dopamine neurons in PD

    Letter from the Editor-in-Chief: Transitions

    No full text

    Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases

    No full text
    Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer’s disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson’s disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington’s disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders

    Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction

    No full text
    DJ-1 is a highly conserved multifunctional protein linked to both neurodegeneration and neoplasia. Among its various activities is an antioxidant property leading to cytoprotection under oxidative stress conditions. This is associated with the ability to modulate signal transduction events that determine how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy in order to adapt to environmental stimuli and stresses. Alterations in DJ-1 expression or function can disrupt homeostatic signaling networks and initiate cascades that play a role in the pathogenesis of conditions such as Parkinson's disease and cancer.DJ-1 plays a major role in various signaling pathways. Related to its anti-oxidant properties, it mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation. Here, we review the ways through which DJ-1 regulates these pathways, focusing on how its regulation of signal transduction contributes to cellular homeostasis and the pathologic states that result from their dysregulation. Keywords: DJ-1, Oxidative stress, Signal transduction, Cell signaling, ERK, MAPK, ASK1, Daxx, Trx1, JNK, p3

    Rare genetic variants support mitochondrial dysfunction in Lewy body disorders

    No full text

    The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress

    No full text
    DJ-1 is a highly conserved protein that protects neurons against oxidative stress and whose loss of function mutations are linked to recessively inherited Parkinson's disease (PD). While a number of signaling pathways have been shown to be regulated by DJ-1, its role in controlling cell survival through non-coding RNAs remains poorly understood. Here, using a microarray screen, we found that knocking down DJ-1 in human neuroblastoma cells results in down-regulation of microRNA-221 (miR-221). This is one of the most abundant miRNAs in the human brain and promotes neurite outgrowth and neuronal differentiation. Yet the molecular mechanism linking miR-221 to genetic forms of PD has not been studied. Consistent with the microarray data, miR-221 expression is also decreased in DJ-1-/- mouse brains. Re-introduction of wild-type DJ-1, but not its PD-linked pathogenic M26I mutant, restores miR-221 expression. Notably, over-expression of miR-221 is protective against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death, while inhibition of endogenous miR-221 sensitizes cells to this toxin. Additionally, miR-221 down-regulates the expression of several pro-apoptotic proteins at basal conditions and prevents oxidative stress-induced up-regulation of bcl-2-like protein 11 (BIM). Accordingly, miR-221 protects differentiated DJ-1 knock-down ReNcell VM human dopaminergic neuronal cells from MPP+-induced neurite retraction and cell death. DJ-1 is a known activator of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway and may modulate miR-221 levels in part through this pathway. We found that inhibiting ERK1/2 decreases miR-221 levels, whereas over-expressing ERK1 in DJ-1 knock-down cells increases miR-221 levels. These findings point to a new cytoprotective mechanism by which DJ-1 may increase miR-221 expression through the MAPK/ERK pathway, subsequently leading to repression of apoptotic molecules. The inability of a pathogenic DJ-1 mutant to modulate miR-221 further supports the relevance of this mechanism in neuronal health and its failure in DJ-1-linked PD. Keywords: microRNA (miRNA), Parkinson's disease, Autosomal recessive, PARK7, miR-221, DJ-1, Oxidative stres

    Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice

    No full text
    α-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease and dementia with Lewy bodies. Accumulating evidence has shown that misfolded fibrillar α-Syn is transmitted from cell-to-cell, a phenomenon that correlates with clinical progression of the disease. We previously showed that deleting the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1), which is a central player linking oxidative stress with neuroinflammation, mitigates the phenotype of α-Syn transgenic mice. However, whether ASK1 impacts pathology and disease progression induced by recombinant α-Syn pre-formed fibrils (PFF) remains unknown. Here, we compared the neuropathological and behavioral phenotype of ASK1 knock-out mice with that of wild-type mice following intrastriatal injections of α-Syn PFF. At 6 months post-injections, ASK1 null mice exhibited reduced amount of phosphorylated α-Syn aggregates in the striatum and cortex, and less pronounced degeneration of the nigrostriatal pathway. Additionally, the neuroinflammatory reaction to α-Syn PFF injection and propagation seen in wild-type mice was attenuated in ASK1 knock-out animals. These neuropathological markers were associated with better behavioral performance. These data suggest that ASK1 plays an important role in pathological α-Syn fibril transmission and, consequently, may impact disease progression. These findings collectively support inhibiting ASK1 as a disease modifying therapeutic strategy for Parkinson disease and related α-synucleinopathies

    Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice

    No full text
    α-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease and dementia with Lewy bodies. Accumulating evidence has shown that misfolded fibrillar α-Syn is transmitted from cell-to-cell, a phenomenon that correlates with clinical progression of the disease. We previously showed that deleting the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1), which is a central player linking oxidative stress with neuroinflammation, mitigates the phenotype of α-Syn transgenic mice. However, whether ASK1 impacts pathology and disease progression induced by recombinant α-Syn pre-formed fibrils (PFF) remains unknown. Here, we compared the neuropathological and behavioral phenotype of ASK1 knock-out mice with that of wild-type mice following intrastriatal injections of α-Syn PFF. At 6 months post-injections, ASK1 null mice exhibited reduced amount of phosphorylated α-Syn aggregates in the striatum and cortex, and less pronounced degeneration of the nigrostriatal pathway. Additionally, the neuroinflammatory reaction to α-Syn PFF injection and propagation seen in wild-type mice was attenuated in ASK1 knock-out animals. These neuropathological markers were associated with better behavioral performance. These data suggest that ASK1 plays an important role in pathological α-Syn fibril transmission and, consequently, may impact disease progression. These findings collectively support inhibiting ASK1 as a disease modifying therapeutic strategy for Parkinson disease and related α-synucleinopathies
    corecore