1,866 research outputs found
Spectral variability of classical T Tauri stars accreting in an unstable regime
Classical T Tauri stars (CTTSs) are variable in different time-scales. One
type of variability is possibly connected with the accretion of matter through
the Rayleigh-Taylor instability that occurs at the interface between an
accretion disc and a stellar magnetosphere. In this regime, matter accretes in
several temporarily formed accretion streams or `tongues' which appear in
random locations, and produce stochastic photometric and line variability. We
use the results of global three-dimensional magnetohydrodynamic simulations of
matter flows in both stable and unstable accretion regimes to calculate
time-dependent hydrogen line profiles and study their variability behaviours.
In the stable regime, some hydrogen lines (e.g. H-beta, H-gamma, H-delta,
Pa-beta and Br-gamma) show a redshifted absorption component only during a
fraction of a stellar rotation period, and its occurrence is periodic. However,
in the unstable regime, the redshifted absorption component is present rather
persistently during a whole stellar rotation cycle, and its strength varies
non-periodically. In the stable regime, an ordered accretion funnel stream
passes across the line of sight to an observer only once per stellar rotation
period while in the unstable regime, several accreting streams/tongues, which
are formed randomly, pass across the line of sight to an observer. The latter
results in the quasi-stationarity appearance of the redshifted absorption
despite the strongly unstable nature of the accretion. In the unstable regime,
multiple hot spots form on the surface of the star, producing the stochastic
light curve with several peaks per rotation period. This study suggests a CTTS
that exhibits a stochastic light curve and a stochastic line variability, with
a rather persistent redshifted absorption component, may be accreting in the
unstable accretion regime.Comment: 20 pages, 11 figures, 1 table, accepted for publication in MNRA
Gamma-ray Flares and VLBI Outbursts of Blazars
A model is developed for the time dependent electromagnetic - radio to
gamma-ray - emission of active galactic nuclei, specifically, the blazars,
based on the acceleration and creation of leptons at a propagating
discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a
discrete relativistic jet component as observed with
very-long-baseline-interferometry (VLBI). Equations are derived for the number,
momentum, and energy of particles in the front taking into account synchrotron,
synchrotron-self-Compton (SSC), and inverse-Compton processes as well as
photon-photon pair production. The apparent synchrotron, SSC, and
inverse-Compton luminosities as functions of time are determined. Predictions
of the model are compared with observations in the gamma, optical and radio
bands. The delay between the high-energy gamma-ray flare and the onset of the
radio is explained by self-absorption and/or free-free absorption by external
plasma. Two types of gamma-ray flares are predicted depending on pair creation
in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R.
Lovelace by sending postal address to [email protected]
Spinning-Down of Moving Magnetars in the Propeller Regime
We use axisymmetric magnetohydrodynamic simulations to investigate the
spinning-down of magnetars rotating in the propeller regime and moving
supersonically through the interstellar medium. The simulations indicate that
magnetars spin-down rapidly due to this interaction, faster than for the case
of a non-moving star. From many simulation runs we have derived an approximate
scaling laws for the angular momentum loss rate, \dot{L} \propto
\~\eta_m^{0.3}\mu^{0.6}\rho^{0.8}{\cal M}^{-0.4} \Omega_*^{1.5}, where \rho is
the density of the interstellar medium, \cal M is Mach number, \mu is the
star's magnetic moment, \Omega_* is its angular velocity, and \eta_m is
magnetic diffusivity. A magnetar with a surface magnetic field of 10^{13} -
10^{15} G is found to spin-down to a period P > 10^5-10^6 s in \sim 10^4 - 10^5
years. There is however uncertainty about the value of the magnetic diffusivity
so that the time-scale may be longer. We discuss this model in respect of Soft
Gamma Repeaters (SGRs) and the isolated neutron star candidate RXJ1856.5-3754.Comment: 10 pages, 4 figures, accepted by MNRAS. See version with better
resolution figures and animation at
http://astrosun2.astro.cornell.edu/us-rus/propeller.ht
Global 3D Simulations of Disc Accretion onto the classical T Tauri Star BP Tauri
The magnetic field of the classical T Tauri star BP Tau can be approximated
as a superposition of dipole and octupole moments with respective strengths of
the polar magnetic fields of 1.2 kG and 1.6 kG (Donati et al. 2008). We adopt
the measured properties of BP Tau and model the disc accretion onto the star.
We observed in simulations that the disc is disrupted by the dipole component
and matter flows towards the star in two funnel streams which form two
accretion spots below the dipole magnetic poles. The octupolar component
becomes dynamically important very close to the star and it redirects the
matter flow to higher latitudes. The spots are meridionally elongated and are
located at higher latitudes, compared with the pure dipole case, where
crescent-shaped, latitudinally elongated spots form at lower latitudes. The
position and shape of the spots are in good agreement with observations. The
disk-magnetosphere interaction leads to the inflation of the field lines and to
the formation of magnetic towers above and below the disk. The magnetic field
of BP Tau is close to the potential only near the star, inside the
magnetospheric surface, where magnetic stress dominates over the matter stress.
A series of simulation runs were performed for different accretion rates. They
show that an accretion rate is lower than obtained in many observations, unless
the disc is truncated close to the star. The torque acting on the star is about
an order of magnitude lower than that which is required for the rotational
equilibrium. We suggest that a star could lose most of its angular momentum at
earlier stages of its evolution.Comment: 11 pages, 13 figures, submitted to MNRA
Fundamentals of crude oil and natural gas processing
This training manual includes term project methodical guide on the course "Fundamentals of crude oil and natural gas processing" in English. The main purpose of the training manual is to provide students the theoretical and methodological assistance at performance the term project on the course "Fundamentals of crude oil and natural gas processing". The manual contains the initial data and reference material needed to perform the calculations. The manual is intended for the students of speciality 6.050304 "Oil and gas production" in English
Three-dimensional simulations of rotationally-induced line variability from a Classical T Tauri star with a misaligned magnetic dipole
We present three-dimensional (3-D) simulations of rotationally induced line
variability arising from complex circumstellar environment of classical T Tauri
stars (CTTS) using the results of the 3-D magnetohydrodynamic (MHD) simulations
of Romanova et al., who considered accretion onto a CTTS with a misaligned
dipole magnetic axis with respect to the rotational axis. The density, velocity
and temperature structures of the MHD simulations are mapped on to the
radiative transfer grid, and corresponding line source function and the
observed profiles of neutral hydrogen lines (H-beta, Pa-beta and Br-gamma) are
computed using the Sobolev escape probability method. We study the dependency
of line variability on inclination angles (i) and magnetic axis misalignment
angles (Theta). By comparing our models with the Pa-beta profiles of 42 CTTS
observed by Folha & Emerson, we find that models with a smaller misaligngment
angle (Theta<~15 deg.) are more consistent with the observations which show
that majority of Pa-beta are rather symmetric around the line centre. For a
high inclination system with a small dipole misalignment angle (Theta ~ 15
deg.), only one accretion funnel (on the upper hemisphere) is visible to an
observer at any given rotational phase. This can cause an anti-correlation of
the line equivalent width in the blue wing (v0)
over a half of a rotational period, and a positive correlation over other half.
We find a good overall agreement of the line variability behaviour predicted by
our model and those from observations. (Abridged)Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. A version
with full resolution figures can be downloaded from
http://www.physics.unlv.edu/~rk/preprint/inclined_dipole.pd
- …