64 research outputs found

    Transit Ly-α\alpha signatures of terrestrial planets in the habitable zones of M dwarfs

    Get PDF
    We modeled the transit signatures in the Lya line of a putative Earth-sized planet orbiting in the HZ of the M dwarf GJ436. We estimated the transit depth in the Lya line for an exo-Earth with three types of atmospheres: a hydrogen-dominated atmosphere, a nitrogen-dominated atmosphere, and a nitrogen-dominated atmosphere with an amount of hydrogen equal to that of the Earth. We calculated the in-transit absorption they would produce in the Lya line. We applied it to the out-of-transit Lya observations of GJ 436 obtained by the HST and compared the calculated in-transit absorption with observational uncertainties to determine if it would be detectable. To validate the model, we also used our method to simulate the deep absorption signature observed during the transit of GJ 436b and showed that our model is capable of reproducing the observations. We used a DSMC code to model the planetary exospheres. The code includes several species and traces neutral particles and ions. At the lower boundary of the DSMC model we assumed an atmosphere density, temperature, and velocity obtained with a hydrodynamic model for the lower atmosphere. We showed that for a small rocky Earth-like planet orbiting in the HZ of GJ436 only the hydrogen-dominated atmosphere is marginally detectable with the STIS/HST. Neither a pure nitrogen atmosphere nor a nitrogen-dominated atmosphere with an Earth-like hydrogen concentration in the upper atmosphere are detectable. We also showed that the Lya observations of GJ436b can be reproduced reasonably well assuming a hydrogen-dominated atmosphere, both in the blue and red wings of the Lya line, which indicates that warm Neptune-like planets are a suitable target for Lya observations. Terrestrial planets can be observed in the Lya line if they orbit very nearby stars, or if several observational visits are available.Comment: 17 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets

    Full text link
    Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, large amounts of the mantles' volatile contents may be outgassed. The resulting H2_2O/CO2_2 dominated steam atmospheres may be lost efficiently via hydrodynamic escape due to the low gravity and the high stellar EUV luminosities. Protoplanets forming later from such degassed building blocks could therefore be drier than previously expected. We model the outgassing and subsequent hydrodynamic escape of steam atmospheres from such embryos. The efficient outflow of H drags along heavier species (O, CO2_2, noble gases). The full range of possible EUV evolution tracks of a solar-mass star is taken into account to investigate the escape from Mars-sized embryos at different orbital distances. The envelopes are typically lost within a few to a few tens of Myr. Furthermore, we study the influence on protoplanetary evolution, exemplified by Venus. We investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with observations. Starting from solar values, consistent isotope ratios (Ne, Ar) can be found for different solar EUV histories, as well as assumptions about the initial atmosphere (either pure steam or a mixture with accreted H). Our results generally favor an early accretion scenario with a small amount of accreted H and a low-activity Sun, because in other cases too much CO2_2 is lost during evolution, which is inconsistent with Venus' present atmosphere. Important issues are likely the time at which the initial steam atmosphere is outgassed and/or the amount of CO2_2 which may still be delivered at later evolutionary stages. A late accretion scenario can only reproduce present isotope ratios for a highly active young Sun, but then very massive steam atmospheres would be required.Comment: 61 pages, 7 figures, 3 tables, accepted to Icaru

    Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Get PDF
    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photo-ionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ~0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20% that of Jupiter.Comment: 8 pages, 6 figures, 2 tables, accepted to MNRA

    Impact inducted surface heating by planetesimals on early Mars

    Full text link
    We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and EUV flux of the young Sun. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto the early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and according surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1-D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is most likely sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within about 0.6 Myr after its formation.Comment: submitted to A&

    The semiclassical limit of quantum gravity and the problem of time

    Full text link
    The question about the appearance of time in the semiclassical limit of quantum gravity continues to be discussed in the literature. It is believed that a temporal Schrodinger equation for matter fields on the background of a classical gravitational field must be true. To obtain this equation, the Born - Oppenheimer approximation for gravity is used. However, the origin of time in this equation is different in works of various authors. For example, in the papers of Kiefer and his collaborators, time is a parameter along a classical trajectory of gravitational field; in the works of Montani and his collaborators the origin of time is introducing the Kuchar - Torre reference fluid; in the extended phase space approach the origin of time is the consequence of existing of the observer in a fixed reference frame. We discuss and compare these approaches. To make the calculations transparent, we illustrate them with a model of a closed isotropic universe. In each approach, one obtains some Schrodinger equation for matter fields with quantum gravitational corrections, but the form of the equation and the corrections depend on additional assumptions which are rather arbitrary. None of the approaches can explain how time had appeared in the Early Universe, since it is supposed that classical gravity and, therefore, classical spacetime had already come into being.Comment: 18 pages, no figure, to be published in Int. J. Mod. Phys.
    corecore