746 research outputs found

    Growth methods of c-axis oriented MgB2 thin films by pulsed laser deposition

    Full text link
    High quality MgB2 thin films have been obtained by pulsed laser deposition both on MgO and on Al2O3 substrates using different methods. In the standard two-step procedure, an amorphous precursor layer is deposited at room temperature starting both from stoichiometric target and from boron target: after this first step, it is annealed in magnesium atmosphere in order to crystallize the superconducting phase. The so obtained films show a strong c-axis orientation, evidenced by XRD analysis, a critical temperature up to 38 K and very high critical fields along the basal planes, up to 22T at 15K. Also an in situ one step technique for the realization of superconducting MgB2 thin films has been developed. In this case, the presence of an argon buffer gas during deposition is crucial and we observe a strong dependence of the quality of the deposited film on the background gas pressure. The influence of the Ar atmosphere has been confirmed by time and space-resolved spectroscopy measurements on the emission spectrum of the plume. The Ar pressure modifies strongly the plasma kinetics by promoting excitation and ionization of the plume species, especially of the most volatile Mg atoms, increasing their internal energy.Comment: Paper presented at Boromag Workshop, Genoa 17-19 June 2002, in press on SUS

    Tetragonal to orthorhombic phase transition in SmFeAsO: a synchrotron powder diffraction investigation

    Full text link
    The crystal structure of SmFeAsO has been investigated by means of Rietveld refinement of high resolution synchrotron powder diffraction data collected at 300 K and 100 K. The compound crystallizes in the tetragonal P4/nmm space group at 300 K and in the orthorhombic Cmma space group at 100 K; attempts to refine the low temperature data in the monoclinic P112/n space group diverged. On the basis of both resistive and magnetic analyses the tetragonal to orthorhombic phase transition can be located at T about 140 K.Comment: Submitted to: Superconductor Science and Technology PACS: 61.05.cp, 61.66.Fn, 74.10.+v, 74.62.Dh, 74.70.D

    Angular dependence of magnetoresistivity in c-oriented MgB2 thin film

    Full text link
    The anisotropy of MgB2 is still under debate: its value, strongly dependent on the sample and on the measuring method, ranges between 1.2 and 13. In this work we present our results on a MgB2 c-oriented superconducting thin film. To evaluate the anisotropy, we followed two different approaches. Firstly, magnetoresistivity was measured as a function of temperature at selected magnetic fields applied both parallel and perpendicular to the c-axis; secondly, we measured magnetoresistivity at selected temperatures and magnetic fields, varying the angle q between the magnetic field and the c-axis. The anisotropy estimated from the ratio between the upper critical fields parallel and perpendicular to the c-axis and the one obtained in the framework of the scaling approach within the anisotropic Ginzburg-Landau theory are different but show a similar trend in the temperature dependence. The obtained results are compared and discussed in the light of the two-band nature of MgB2. A comparison between critical fields in thin films and single crystal is also performed.Comment: 13 pages, 4 figures, European Physical Journal B in pres

    Experimental confirmation of the low B isotope coefficient in MgB2

    Full text link
    Recent investigations have shown that the first proposed explanations of the disagreement between experimental and theoretical value of isotope coefficient in MgB2 need to be reconsidered. Considering that in samples with residual resistivity of few mu-Ohm cm critical temperature variations produced by disorder effects can be comparable with variations due to the isotopic effect, we adopt a procedure in evaluating the B isotope coefficient which take account of these effects, obtaining a value which is in agreement with previous results and then confirming that there is something still unclear in the physics of MgB2.Comment: 8 pages, 3 figures Title has been changed A statement has been added in page 7 of the pdf file "Finally we would..." Reference 21 has been added Figure 1 anf Figure 2 have been change

    Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain

    Full text link
    High purity epitaxial FeSe0.5Te0.5 thin films with different thickness were grown by Pulsed Laser Ablation on different substrates. By varying the film thickness, Tc up to 21K were observed, significantly larger than the bulk value. Structural analyses indicated that the a axis changes significantly with the film thickness and is linearly related to the Tc. The latter result indicates the important role of the compressive strain in enhancing Tc. Tc is also related to both the Fe-(Se,Te) bond length and angle, suggesting the possibility of further enhancement
    • …
    corecore