1,015 research outputs found
Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment
The T2K neutrino experiment at J-PARC uses a set of near detectors to measure
the properties of an unoscillated neutrino beam and neutrino interaction
cross-sections. One of the sub-detectors of the near-detector complex, the side
muon range detector (SMRD), is described in the paper. The detector is designed
to help measure the neutrino energy spectrum, to identify background and to
calibrate the other detectors. The active elements of the SMRD consist of 0.7
cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet
yokes. The readout of each scintillator slab is provided through a single WLS
fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel
avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This
design allows us to achieve a high MIP detection efficiency of greater than
99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a
spatial resolution along the slab better than 10 cm were obtained for the SMRD
counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to
be published in the conference proceeding
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high
We measured the longitudinal double spin asymmetries for single
hadron muo-production off protons and deuterons at photon virtuality <
1(GeV/) for transverse hadron momenta in the range 0.7
GeV/ to 4 GeV/ . They were determined using COMPASS data taken
with a polarised muon beam of 160 GeV/ or 200 GeV/ impinging on
polarised or targets. The experimental
asymmetries are compared to next-to-leading order pQCD calculations, and are
sensitive to the gluon polarisation inside the nucleon in the range
of the nucleon momentum fraction carried by gluons
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data
Using a novel analysis technique, the gluon polarisation in the nucleon is
re-evaluated using the longitudinal double-spin asymmetry measured in the cross
section of semi-inclusive single-hadron muoproduction with photon virtuality
. The data were obtained by the COMPASS experiment at
CERN using a 160 GeV/ polarised muon beam impinging on a polarised LiD
target. By analysing the full range in hadron transverse momentum ,
the different -dependences of the underlying processes are separated
using a neural-network approach. In the absence of pQCD calculations at
next-to-leading order in the selected kinematic domain, the gluon polarisation
is evaluated at leading order in pQCD at a hard scale of . It is determined in three intervals
of the nucleon momentum fraction carried by gluons, , covering the
range ~ and does not exhibit a significant
dependence on . The average over the three intervals, at
, suggests that the gluon polarisation
is positive in the measured range.Comment: 14 pages, 6 figure
Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target
Multiplicities of charged pions and unidentified hadrons produced in
deep-inelastic scattering were measured in bins of the Bjorken scaling variable
, the relative virtual-photon energy and the relative hadron energy .
Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and
an isoscalar target (LiD). They cover the kinematic domain in the photon
virtuality > 1(GeV/c, , and . In addition, a leading-order pQCD analysis was performed using the
pion multiplicity results to extract quark fragmentation functions
Interplay among transversity induced asymmetries in hadron leptoproduction
In the fragmentation of a transversely polarized quark several left-right
asymmetries are possible for the hadrons in the jet. When only one unpolarized
hadron is selected, it exhibits an azimuthal modulation known as Collins
effect. When a pair of oppositely charged hadrons is observed, three
asymmetries can be considered, a di-hadron asymmetry and two single hadron
asymmetries. In lepton deep inelastic scattering on transversely polarized
nucleons all these asymmetries are coupled with the transversity distribution.
From the high statistics COMPASS data on oppositely charged hadron-pair
production we have investigated for the first time the dependence of these
three asymmetries on the difference of the azimuthal angles of the two hadrons.
The similarity of transversity induced single and di-hadron asymmetries is
discussed. A new analysis of the data allows to establish quantitative
relationships among them, providing for the first time strong experimental
indication that the underlying fragmentation mechanisms are all driven by a
common physical process.Comment: 6 figure
- …