5,411 research outputs found
Inclusive W and Z production at LHC startup with the CMS experiment
W and Z candidates decaying into leptons can be observed in the very early phase of the LHC run. The results for the W/Z production presented are obtained for 10TeV simulated data and are fully valid for 7TeV center-of-mass energy (via a scale factor of the W and Z signals around 0.7)
Measurement of W, Z and Top properties with CMS
We present several measurements in the domain of electroweak and top physics in proton-proton collisions at the LHC at a centre-of-mass energy of 7TeV. We use data collected with the CMS experiment during the year 2010, and
amounting up to a total integrated luminosity of 36 pbâ1. Measurements include total cross section productions, asymmetries, top mass measurements and focus on final states with the presence of charged leptons. The results are compared with theory predictions
A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis
In many randomized controlled trials the outcome of interest is a time to event, and one measures on each subject baseline covariates and time-dependent covariates until the subject either drops-out, the time to event is observed, or the end of study is reached. The goal of such a study is to assess the causal effect of the treatment on the survival curve. Standard methods (e.g., Kaplan-Meier estimator, Cox-proportional hazards) ignore the available baseline and time-dependent covariates, and are therefore biased if the drop-out is affected by these covariates, and are always inefficient. We present a targeted maximum likelihood estimator of the causal effect of treatment on survival fully utilizing all the available covariate information, resulting in a double robust locally efficient substitution estimator that will be consistent and asymptotically linear if either the censoring mechanism is consistently estimated, or if the maximum likelihood based estimator is already consistent. In particular, under the independent censoring assumption assumed by current methods, this TMLE is always consistent and asymptotically linear so that it provides valid confidence intervals and tests. Furthermore, we show that when both the censoring mechanism and the initial maximum likelihood based estimator are mis-specified, and thus inconsistent, the TMLE exhibits stability when inverse probability weighted estimators and double robust estimating equation based methods break down The TMLE is used to analyze the Tshepo study, a study designed to evaluate the efficacy, tolerability, and development of drug resistance of six different first-line antiretroviral therapies. Most importantly this paper presents a general algorithm that may be used to create targeted maximum likelihood estimators of a large class of parameters of interest for general longitudinal data structures
Sphingosine-1-phosphate modulates vascular permeability and cell recruitment inacute inflammation in vivo.
The sphingosine kinase (SPK)/sphingosine-1-phosphate (S1P) pathway recently has been associated with a variety of inflammatory-based diseases. The majority of these studies have been performed in vitro. Here, we have addressed the relevance of the SPK/S1P pathway in the acute inflammatory response in vivo by using different well known preclinical animal models. The study has been performed by operating a pharmacological modulation using 1) L-cycloserine and DL-threo-dihydrosphingosine (DTD), S1P synthesis inhibitors or 2) 2-undecyl-thiazolidine-4-carboxylic acid (BML-241) and N-(2,6-dichloro-4-pyridinyl)-2-[1,3-dimethyl-4-(1-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-hydrazinecarboxamide (JTE-013), specific S1P(2) and S1P(3) receptor antagonists. After local injection of carrageenan in mouse paw S1P release significantly increases locally and decreases during the resolution phase. Expression of SPKs and S1P(2) and S1P(3) receptors is increased in inflamed tissues. Administration of L-cycloserine or DTD caused a significant anti-inflammatory effect. By using different animal models we have also demonstrated that the SPK/S1P pathway contributes to changes in vascular permeability and promotes cell recruitment. The S1P effect on cell recruitment results is receptor-mediated because both JTE-013 and BML-241 inhibited zymosan-induced cell chemotaxis without effect on vascular leakage. Conversely, changes in vascular permeability involve mainly SPK activity, because compound 48/80-induced vascular leakage was significantly inhibited by DTD. In conclusion, the SPK/S1P pathway is involved in acute inflammation and could represent a valuable therapeutic target for developing a new class of anti-inflammatory drugs
Persistent storage of non-event data in the CMS databases
In the CMS experiment, the non event data needed to set up the detector, or being produced by it, and needed to calibrate the physical responses of the detector itself are stored in ORACLE databases. The large amount of data to be stored, the number of clients involved and the performance requirements make the database system an essential service for the experiment to run. This note describes the CMS condition database architecture, the data-flow and PopCon, the tool built in order to populate the offline databases. Finally, the first results obtained during the 2008 and 2009 cosmic data taking are presented.In the CMS experiment, the non event data needed to set up the detector, or being produced by it, and needed to calibrate the physical responses of the detector itself are stored in ORACLE databases. The large amount of data to be stored, the number of clients involved and the performance requirements make the database system an essential service for the experiment to run. This note describes the CMS condition database architecture, the data-flow and PopCon, the tool built in order to populate the offline databases. Finally, the first experience obtained during the 2008 and 2009 cosmic data taking are presented
Design of vaccine efficacy trials during public health emergencies
Public Health Emergencies (PHEs) provide a complex and challenging environment for vaccine evaluation. Under the R&D Blueprint Plan of Action, the World Health Organization (WHO) has convened a group of experts to agree on standard procedures to rapidly evaluate experimental vaccines during PHEs while maintaining the highest scientific and ethical standards. The Blueprint priority diseases, selected for their likelihood to cause PHEs and the lack of adequate medical countermeasures,were used to frame our methodological discussions. Here, we outline major vaccine study designs to be used in PHEs and summarize high-level recommendations for their use in this setting. We recognize that the epidemiology and transmission dynamics of the Blueprint priority diseasesmay be highly uncertain and that the unique characteristics of the vaccines and outbreak settings may affect our study design. To address these challenges, our group underscores the need for novel, flexible,and responsive trial designs. We conclude that assignment to study groups using randomization is a key principle underlying rigorous study design and should be utilized except in exceptional circumstances. Advance planning for vaccine trial designs is critical for rapid and effective response to a PHE and to advance knowledge to address and mitigate future PHEs
A simulation tool for MRPC telescopes of the EEE project
The Extreme Energy Events (EEE) Project is mainly devoted to the study of the
secondary cosmic ray radiation by using muon tracker telescopes made of three
Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a
telescope network mainly distributed across Italy, hosted in different building
structures pertaining to high schools, universities and research centers.
Therefore, the possibility to take into account the effects of these structures
on collected data is important for the large physics programme of the project.
A simulation tool, based on GEANT4 and using GEMC framework, has been
implemented to take into account the muon interaction with EEE telescopes and
to estimate the effects on data of the structures surrounding the experimental
apparata.A dedicated event generator producing realistic muon distributions,
detailed geometry and microscopic behavior of MRPCs have been included to
produce experimental-like data. The comparison between simulated and
experimental data, and the estimation of detector resolutions is here presented
and discussed
New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans
The Extreme Energy Events observatory is an extended muon telescope array,
covering more than 10 degrees both in latitude and longitude. Its 59 muon
telescopes are equipped with tracking detectors based on Multigap Resistive
Plate Chamber technology with time resolution of the order of a few hundred
picoseconds. The recent restrictions on greenhouse gases demand studies for new
gas mixtures in compliance with the relative requirements. Tetrafluoropropene
is one of the candidates for tetrafluoroethane substitution, since it is
characterized by a Global Warming Power around 300 times lower than the gas
mixtures used up to now. Several mixtures have been tested, measuring
efficiency curves, charge distributions, streamer fractions and time
resolutions. Results are presented for the whole set of mixtures and operating
conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are
being performed at the CERN-01 EEE telescope. The tests are focusing on
identifying a mixture with good performance at the low rates typical of an EEE
telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive
Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta,
Jalisco State, Mexic
The Extreme Energy Events HECR array: status and perspectives
The Extreme Energy Events Project is a synchronous sparse array of 52
tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic
Rays-related phenomena. The observatory is also meant to address Long Distance
Correlation (LDC) phenomena: the network is deployed over a broad area covering
10 degrees in latitude and 11 in longitude. An overview of a set of preliminary
results is given, extending from the study of local muon flux dependance on
solar activity to the investigation of the upward-going component of muon flux
traversing the EEE stations; from the search for anisotropies at the sub-TeV
scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
- âŠ