2,373 research outputs found

    On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation

    Full text link
    Within the standard approach of effective field theory of weak interactions for ΔB=1\Delta B = 1 transitions, we look for possibly unexpected subtle New Physics effects, here dubbed "flavourful Easter eggs". We perform a Bayesian global fit using the publicly available HEPfit package, taking into account state-of-the-art experimental information concerning these processes, including the suggestive measurements from LHCb of RKR_{K} and RK∗R_{K^{*}}, the latter available only very recently. We parametrize New Physics contributions to b→sb \to s transitions in terms of shifts of Wilson coefficients of the electromagnetic dipole and semi-leptonic operators, assuming CP-conserving effects, but allowing in general for violation of lepton flavour universality. We show how optimistic/conservative hadronic estimates can impact quantitatively the size of New Physics extracted from the fit. With a conservative approach to hadronic uncertainties we find nonzero New Physics contributions to Wilson coefficients at the level of ∼3σ\sim 3\sigma, depending on the model chosen. Furthermore, given the interplay between hadronic contributions and New Physics effects in the leptonic vector current, a scenario with nonstandard leptonic axial currents is comparable to the more widely advocated one with New Physics in the leptonic vector current.Comment: 27 pages, 6 figures and 5 tables. v2: numerical results and plots replaced with higher statistics MC runs, references added. v3: final version to appear in EPJ

    Synergy between Hund-Driven Correlations and Boson-Mediated Superconductivity

    Get PDF
    Multiorbital systems such as the iron-based superconductors provide a new avenue to attack the long-standing problem of superconductivity in strongly correlated systems. In this work we study the superconductivity driven by a generic bosonic mechanism in a multiorbital model including the full dynamical electronic correlations induced by the Hubbard U and the Hund's coupling. We show that superconductivity survives much more in a Hund's metal than in an ordinary correlated metal with the same degree of correlation. The redistribution of spectral weight characteristic of the Hund's metal reflects also in the enhancement of the orbital-selective character of the superconducting gaps, in agreement with experiments in iron-based superconductors

    Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions

    Get PDF
    We study the role of electronic spin and valley symmetry in the quantum interference (QI) patterns of the transmission function in graphene quantum junctions. In particular, we link it to the position of the destructive QI antiresonances. When the spin or valley symmetry is preserved, electrons with opposite spin or valley display the same interference pattern. On the other hand, when a symmetry is lifted, the antiresonances are split, with a consequent dramatic differentiation of the transport properties in the respective channel. We demonstrate rigorously this link in terms of the analytical structure of the electronic Green function, which follows from the symmetries of the microscopic model, and we confirm the result with numerical calculations for graphene nanoflakes. We argue that this is a generic and robust feature that can be exploited in different ways for the realization of nanoelectronic QI devices, generalizing the recent proposal of a QI-assisted spin-filtering effect [A. Valli et al., Nano Lett. 18, 2158 (2018)10.1021/acs.nanolett.8b00453]

    Inducing and controlling magnetism in the honeycomb lattice through a harmonic trapping potential

    Get PDF
    We study strongly interacting ultracold spin-1/2 fermions in a honeycomb lattice in the presence of a harmonic trap. Tuning the strength of the harmonic trap we show that it is possible to confine the fermions in artificial structures reminiscent of graphene nanoflakes in solid state. The confinement on small structures induces magnetic effects which are absent in a large graphene sheet. Increasing the strength of the harmonic potential we are able to induce different magnetic states, such as a N\ue9el-like antiferromagnetic or ferromagnetic state, as well as mixtures of these basic states. The realization of different magnetic patterns is associated with the terminations of the artificial structures, in turn controlled by the confining potential
    • …
    corecore