421 research outputs found

    Theoretical investigation of the evolution of the topological phase of Bi2_{2}Se3_{3} under mechanical strain

    Full text link
    The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi2_2Se3_3, this inversion occurs at the Γ\Gamma point. For bulk Bi2_2Se3_3, we have analyzed the effect of arbitrary strain on the Γ\Gamma point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi2_2Te3_3 supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution

    Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)

    Full text link
    We investigate the nature and origin of the metal-insulator transition in Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed core, valence, and conduction band studies with x-ray and ultraviolet photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy, it is shown that a hard gap opens up for Ti content greater than equal to 0.2, while compositions with x<0.2 exhibit finite intensity at the Fermi energy. This establishes that the metal-insulator transition in this homovalent substituted series of compounds is driven by Coulomb interaction leading to the formation of a Mott gap, in contrast to transitions driven by disorder effects or band flling.Comment: Accepted for publication in Phys. Rev.

    Effects of tin phosphate nanosheet addition on proton-conducting properties of sulfonated poly(ether sulfone) membranes

    Get PDF
    Organic/inorganic composite membranes were prepared by dispersing nanosheets of layered tin phosphate hydrate [Sn(HPO4)2·nH2O (SnP)] in sulfonated poly(ether sulfone) (SPES) at SnP contents of 0–40 vol.%. The stabilities and proton conductivities of SPES/SnP nanosheet (SnP-NS) composite membraneswere investigated and comparedwith those of SPES/SnP particle (SnP-P) composite membranes. The chemical stabilities as evaluated by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier-transform infrared spectroscopy were improved in both composite membranes. The improvement in the structural stability of SPES/SnP-NS composite membranes was more evident than that in SPES/SnP-P. The results suggest that exfoliation of SnP increases the area of the SPES–SnP interface and extends the connectivity of the network of hydrogen bonds. A composite membrane containing 10 vol.% SnP-NS (SPES/SnP-NS10vol.%) showed a high conductivity of 5.9×10−2 S cm−1 at 150 °C under saturated water vapor pressure. Although less water was present in SPES/SnP-NS10vol.% than in SPES/SnP-P10vol.% or pure SPES, the conductivity of SnP-NS10vol.% was the highest among these samples at 130 °C under a high relative humidity (RH). However at a low RH, the proton-conducting property was not improved by changing the composition of the SnP-NS. These results suggest that the hydrogen-bond network operates effectively for proton conduction at a high RH, but at a low RH, the network fails to conduct as a result of a decrease in water content accompanied by structural stabilization

    The Morphological Changes in the Vestibular Sensory Epithelia Following Electrical Stimulation

    Get PDF
    The morphological changes of the vestibular sensory epithelia of the guinea pig following electrical stimulation were investigated using scanning electron microscope. Positive and negative square wave pulse stimulation was given through a silver ball electrode placed on the round window membrane for one hour. The current intensities used were 100, 200 and 300 A. While the direct current stimulation at intensities of 100 or 200 A did not cause any significant changes, severe damage of the utricular macula and the ampullar crista of the lateral semicircular canal was observed at 300 A. The degenerative changes such as fusion of sensory hairs, protrusion of the cuticular plate and loss of sensory cells were found on both the utricle and the semicircular canal. In the most severely damaged area, the sensory epithelial surface was badly torn apart. In the clinical application of direct current to the inner ear for relieving tinnitus, special attention should be paid to the vestibular organ

    Origin of magnetic moments and presence of a resonating valence bond state in Ba2_2YIrO6_6

    Get PDF
    While it was speculated that 5d4d^4 systems would possess non-magnetic JJ~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba2_2YIrO6_6, which in spite of having a perfectly cubic structure with largely separated Ir5+^{5+} (d4d^4) ions, has consistently shown presence of weak magnetic moments. Moreover, we clearly show from Muon Spin Relaxation (μ\muSR) measurements that a change in the magnetic environment of the implanted muons in Ba2_2YIrO6_6 occurs as temperature is lowered below 10~K. This observation becomes counterintuitive, as the estimated value of SOC obtained by fitting the RIXS spectrum of Ba2_2YIrO6_6 with an atomic j−jj-j model is found to be as high as 0.39~eV, meaning that the system within this model is neither expected to possess moments nor exhibit temperature dependent magnetic response. Therefore we argue that the atomic j−jj-j coupling description is not sufficient to explain the ground state of such systems, where despite having strong SOC, presence of hopping triggers delocalisation of holes, resulting in spontaneous generation of magnetic moments. Our theoretical calculations further indicate that these moments favour formation of spin-orbital singlets in the case of Ba2_2YIrO6_6, which is manifested in μ\muSR experiments measured down to 60~mK.Comment: 20 Pages, 7 Figure

    Theoretical Investigation of the Evolution of the Topological Phase of Bi\u3csub\u3e2\u3c/sub\u3eSe\u3csub\u3e3\u3c/sub\u3e under Mechanical Strain

    Get PDF
    The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi2Se3, this inversion occurs at the Γ point. For bulk Bi2Se3, we have analyzed the effect of arbitrary strain on the Γ point band gap using density functional theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi2Te3 supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution
    • …
    corecore