1,307,058 research outputs found

    Dynamical Response of Fermi Condensate to Varying Magnetic Fields

    Full text link
    We investigate the dynamical response of strongly interacting ultra-cold fermionic atoms near Feshbach resonance to varying magnetic fields. Following the experimental practices, we calculate the response of the atoms to oscillating and to linearly ramped magnetic fields respectively. For oscillating magnetic fields, depending on the frequencies and the amplitudes of the oscillations, the response of the pair excitation gap shows either linear or rich non-linear behaviour. In addition, both the spectral studies through the linear response theory and the time-domain simulations suggest the existence of a resonant frequency corresponding to the pair dissociation threshold. For linearly ramped magnetic fields, the response of the excitation gap shows damped oscillations. The final value of the excitation gap depends on the rate of the field sweep.Comment: 6 pages, 6 figure

    DsJD_{sJ}(2317) meson production at RHIC

    Full text link
    Production of DsJD_{sJ}(2317) mesons in relativistic heavy ion collisions at RHIC is studied. Using the quark coalescence model, we first determine the initial number of DsJD_{sJ}(2317) mesons produced during hadronization of created quark-gluon plasma. The predicted DsJD_{sJ}(2317) abundance depends sensitively on the quark structure of the DsJD_{sJ}(2317) meson. An order-of-magnitude larger yield is obtained for a conventional two-quark than for an exotic four-quark DsJD_{sJ}(2317) meson. To include the hadronic effect on the DsJD_{sJ}(2317) meson yield, we have evaluated the absorption cross sections of the DsJD_{sJ}(2317) meson by pion, rho, anti-kaon, and vector anti-kaon in a phenomenological hadronic model. Taking into consideration the absorption and production of DsJD_{sJ}(2317) mesons during the hadronic stage of heavy ion collisions via a kinetic model, we find that the final yield of DsJD_{sJ}(2317) mesons remains sensitive to its initial number produced from the quark-gluon plasma, providing thus the possibility of studying the quark structure of the DsJD_{sJ}(2317) meson and its production mechanism in relativistic heavy ion collisions.Comment: 12 pages, 6 figure

    Simultaneous planar growth of amorphous and crystalline Ni silicides

    Get PDF
    We report a solid-state interdiffusion reaction induced by rapid thermal annealing and vacuum furnace annealing in evaporated Ni/Si bilayers. Upon heat treatment of a Ni film overlaid on a film of amorphous Si evaporated from a graphite crucible, amorphous and crystalline silicide layers grow uniformly side by side as revealed by cross-sectional transmission electron microscopy and backscattering spectrometry. This phenomenon contrasts with the silicide formation behavior previously observed in the Ni-Si system, and constitutes an interesting counterpart of the solid-state interdiffusion-induced amorphization in Ni/Zr thin-film diffusion couples. Carbon impurity contained in the amorphous Si film stabilizes the amorphous phase. Kinetic and thermodynamic factors that account for the experimental findings are discussed
    • …
    corecore